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Abstract—In system design, high-level system models typically
need to be mapped to an execution platform (e.g., hardware, envi-
ronment, compiler, etc). The platform may naturally strengthen
some constraints or weaken some others, but it is expected that
the low-level implementation on the platform should preserve
all the functional and extra-functional properties of the model,
including the ones for information-flow security. It is, however,
well known that simple notions of refinement do not preserve
information-flow security properties.

In this paper, we propose a novel automated mapping syn-
thesis approach that preserves hyperproperties expressed in the
temporal logic HyperLTL. The significance of our technique is
that it can handle formulas with quantifier alternations, which
is typically the source of difficulty in refinement for information-
flow security policies. We reduce the mapping synthesis problem
to HyperLTL model checking and leverage recent efforts in
bounded model checking for hyperproperties. We demonstrate
how mapping synthesis can be used in various applications,
including enforcing non-interference and automating secrecy-
preserving refinement mapping. We also evaluate our approach
using the battleship game and password validation use cases.

Keywords—Information-flow security, Hyperproperties, Synthe-
sis, Refinement

I. INTRODUCTION

System development often involves relating program arti-
facts at different levels of abstraction. For instance, one may
begin by designing a high-level model of the system and later
refine it into a more detailed implementation. This step may
involve imposing additional constraints or concretizing abstract
constructs (e.g., actions) of the system into more detailed
counterparts. For example, a simple assignment, a := b + c
in a high-level programming language is typically mapped to
two steps during translation to an intermediate language: (1)
reg := b + c, and (2) a := reg, where reg is a register in the
target hardware. It is understood that conducting such a step
has to result in an artifact that preserves desired properties
of the original model. Typically, this preservation achieved
by establishing a notion of refinement; that is, any behavior
of the implementation is also allowed by the abstract model.
However, it is well known that in the context of information-
flow security, simple notions of refinement of an abstract

This work was funded in part by the NSF SaTC Award 2100989, Title:
SaTC: CORE: Small: Techniques for Software Model Checking of Hyper-
properties and NSF SaTC award CNS-1801546 Title: SaTC: CORE: Medium:
Collaborative: Bridging the Gap between Protocol Design and Implementation
through Automated Mapping.

model that satisfies a security property may result in an
implementation that violates the property, also known as the
refinement paradox [37], [39].

In a prior work [38], a notion of mappings was introduced
as a mechanism for relating the elements (e.g., actions) of a
pair of independently developed system models (e.g., a high-
level design and a target implementation platform). For ex-
ample, when building an application, an abstract procedure to
“check a user input against a password” may be implemented
by using a string matching algorithm that is available as part of
a library; a mapping would then relate this abstract procedure
to a specific instantiation of the matching algorithm. But a
platform may exhibit its own complex behavior, including
subtle interactions with the environment that may be difficult to
anticipate and reason about (e.g., the string matching algorithm
may leak the number of characters in the password). This
makes the task of weaving the behaviors of the two models
non-trivial; to alleviate this process, [38] also proposed a tech-
nique for automatically synthesizing a mapping that establishes
a trace-based property [3] in the resulting weaving of the
models. However, trace properties are not expressive enough
to encode a wide range of security properties [16], including
non-interference, and thus the approach of [38] falls short of
being able to synthesize mappings to satisfy such properties.

In this paper, we study the problem of mapping synthesis in
the context of hyperproperties [16] expressed in the temporal
logic HyperLTL. Let us first explain the problem by using
the following high-level toy example. Consider the transition
system (Kripke structure) KA shown in Fig. 1a and the
following HyperLTL formula describing a requirement for KA:

ϕ = ∀π. ∃π′. (pπ → ¬pπ′)

This formula stipulates that for any trace π, there exists a trace
π′, such that it is always the case that if proposition p holds in
some position of π, then p should not hold in the same position
of trace π′. Observe that KA |= ϕ, because for any arbitrary
trace π in KA (e.g., trace t1 = {}{p}{p}{}ω produced by
path s0s1s4sω5 ), there exists another trace π′, such that when
p is true in π, p is false in π′ (e.g., trace t2 = {}{q}{q}{}ω
produced by path s0s3s2sω5 ).

Now, suppose that KA models a high-level design, and our
goal is to implement KA on platform KB shown in Fig. 1b.
In our approach, this task can be formulated as synthesizing a
mapping function m, such that (KA ‖m KB) |= ϕ, where ‖m
denotes the parallel composition operator under mapping m,
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Fig. 1: Illustration of the mapping synthesis problem for HyperLTL formula ϕ = ∀π.∃π′. (pπ → ¬pπ′).

also called mapping composition [38]. This means that when
we compose KA with KB , we have to somehow map the
propositions of KA to the propositions of KB , in such a way
that their mapping composition satisfies ϕ. An intuitive mean-
ing behind mapping composition is that whenever proposition
a holds in KA, m(a) must also hold in KB in order for the
two machines to move synchronously in their composition.
Otherwise, the composed state does not exist in KA ‖m KB .
For instance, if we apply the following mapping function:

m(p) = r, m(q) = s

we obtain the composed Kripke structure KA ‖m KB shown
in Fig. 1c. We can see that traces t1 and t2 in KA mentioned
above are now manifested as traces t′1 = {}{p, r}{q, s}{}ω
and t′2 = {}{q, s}{q, s}{}ω in KA ‖m KB , which allows ϕ
to be preserved under mapping m. Thus, m is considered to
be a valid mapping. Now, consider another mapping function
m′, where:

m′(p) = s, m′(q) = r

Mapping m′ results in the composed Kripke structure KA ‖m′

KB shown in Fig. 1d. Here, trace t1 in KA is manifested
in the composed structure as t′′1 = {}{p, s}{p, s}{}ω , for
which there exists no trace that satisfies formula ϕ. Thus, we
identify mapping m′ as an invalid mapping that breaks the
satisfaction of the desired HyperLTL formula. The mapping
synthesis problem is to find a valid mapping, if one exists.

In this paper, we solve the mapping synthesis problem
for hyperproperties through a reduction to the bounded model
checking (BMC) problem for HyperLTL [35]. Roughly speak-
ing, given a model K and a HyperLTL formula ϕ, the goal
of BMC is to search for a set of traces bounded by some
length k ≥ 0 in K |= ϕ. Our reduction takes a pair of models,
KA and KB , and HyperLTL formula ϕ as input, and generates
a positive answer if and only if the answer to the original
mapping synthesis problem has a solution. The reduced BMC
problem deals with a HyperLTL formula of the form ∃πM .Ξ,
where identifying a witness to πM is analogous to synthesizing
a function m in the original mapping synthesis problem. Here,
Ξ is formula that encodes the original formula ϕ and its
relation to the existence of a mapping function as well as the
models. A prominent characteristic of our technique is that
it can handle formulas with quantifier alternations, which is
typically the source of difficulty in verifying information-flow
security policies.

Although we have so far motivated this work with syn-
thesizing a mapping that encodes platform implementation
decisions, the notion of mappings here is more general, and our
mapping synthesis framework can be used to solve a number
of other tasks that are relevant to secure program development.

In general, the pair of models KA and KB need not necessarily
represent abstract/high-level and concrete/platform machines,
respectively. Moreover, the direction of mapping from abstract
to concrete may be reversed, and instead be from concrete
to abstract. For instance, KA may represent a given program
and KB a specification of desired behaviors, and m could be
synthesized as a refinement mapping [1] from the concrete
model KA to the more abstract model KB , to show that
every behavior of KA is also one of KB (see Section V). In
addition, our notion of mappings can also be used to enforce
a property instead of preserving it: this is done in cases where
a given program (KA) violates a desired property (e.g., non-
interference), which is then enforced by being deployed in a
target environment (KB) with additional behavioral constraints
(see example introduced in Section II-C). To summarize, our
synthesis approach can be applied to many scenarios including
synthesizing implementation decisions (see example in Fig. 1,
and [38]), synthesizing refinement mapping (see Section V),
and property enforcement (see Section II-C).

We have built a prototype implementation of our tech-
nique.1 As the main demonstration of our tool, we show how
our approach can be used to achieve preservation of secrecy
under refinement. In [4], the authors prove that their notion of
refinement preserves what they call secrecy properties, but only
hint at the possibility of automated techniques for verifying
that a concrete program is a secrecy-preserving refinement
of an abstract program. We take one step further and show
how our approach can be used to synthesize such a refinement
mapping.

In particular, our evaluation consists of two case studies of
secrecy-preserving refinement, where the goal is to find a valid
mapping from a concrete program to an abstract specification.
The first case study is the well-known battleship game, a
strategic guessing game for two players, where the locations
of each player’s fleet of ships are marked on a grid and
concealed from each other. We show how our technique can
be used to synthesize a refinement mapping from a concrete
implementation of the game to an abstract specification that
does not leak additional information about the fleet locations.
Our second case study is a password checking program that
compares a user input with a server-side password. A program
implementing this procedure should not leak potentially critical
information about the password, such as the size of the
stored data. Here, we show how our approach can be used to
automatically check whether a given implementation preserves
the secrecy of the sensitive data by synthesizing a mapping
from the concrete implementation to the abstract specification.

1Our code and case studies are available at https://bit.ly/3aJwKbf.

https://bit.ly/3aJwKbf


Organization: The rest of the paper is organized as
follows. In Section II, we present the preliminary concepts. The
formal statement of mapping synthesis is given in Section III.
Section IV describes the reduction of the mapping synthesis
problem to HyperLTL model checking. The application of
mapping synthesis to secrecy-preserving refinement mapping
is explained in Section V, while the case studies are presented
in Section VI. We discuss related work in Section VII and
conclude in Section VIII.

II. PRELIMINARIES

A. Kripke Structures

Let AP be a finite set of atomic propositions and Σ = 2AP

be the alphabet, where 2X denotes the powerset (set of all
subsets) of a set X . A letter is an element of Σ. A trace
t ∈ Σω over alphabet Σ is an infinite sequence of letters:
t = t(0)t(1)t(2) · · · . We model systems as finite-state Kripke
structures.

Definition 1: A Kripke structure is a tuple K =
〈S, S0, δ,AP, L〉, where

• S is a finite set of states,

• S0 ⊆ S is the set of initial states,

• δ ⊆ S × S is a transition relation,

• AP is the set of atomic propositions, and

• L : S → 2AP is a labeling function.

We require that for each s ∈ S, there exists s′ ∈ S, such that
(s, s′) ∈ δ. That is, every state must have at least one successor
(no deadlocks). �

The size of the Kripke structure is the number of its states.
A loop in K is a finite sequence s(0)s(1) · · · s(n), such that
(s(i), s(i+ 1)) ∈ δ, for all 0 ≤ i < n, and (s(n), s(0)) ∈ δ.
We call a Kripke structure acyclic, if the only loops are self-
loops on otherwise terminal states, i.e., on states that have no
other outgoing transition. Since Definition 1 does not allow
terminal states, we only consider acyclic Kripke structures that
have such added self-loops.

A path of a Kripke structure is an infinite sequence
of states s(0)s(1) · · · ∈ Sω , such that s(0) ∈ S0, and
(s(i), s(i+ 1)) ∈ δ, for all i ≥ 0. A trace of a Kripke structure
is a sequence t(0)t(1)t(2) · · · ∈ Σω , such that there exists a
path s(0)s(1) · · · ∈ Sω with t(i) = L(s(i)), for all i ≥ 0. We
denote by Traces(K, s) the set of all traces of K with paths
that start in state s ∈ S, and use Traces(K) as a shorthand
for
⋃
s∈S0

Traces(K, s).

B. The Temporal Logic HyperLTL

Linear Temporal Logic (LTL) is a standard logic used in
formal specification and verification of reactive systems [5].
HyperLTL [15] is an extension of LTL for hyperproperties.

1) Syntax: The syntax of HyperLTL formulas is defined
inductively by the following grammar:

ϕ ::= ∃π.ϕ | ∀π.ϕ | φ
φ ::= pπ | ¬φ | φ ∨ φ | φ | φ U φ

where p ∈ AP is an atomic proposition and π is a trace
variable from an infinite supply of variables V . The Boolean
connectives ¬ and ∨ have the usual meaning, U is the temporal
until operator, and is the temporal next operator. We also
consider syntactic sugar true ≡ pπ ∨ ¬pπ , false ≡ ¬true,
ϕ1∧ϕ2 ≡ ¬(¬ϕ1∨¬ϕ2), and ϕ1 → ϕ2 ≡ ¬ϕ1∨ϕ2 . Also, the
derived temporal operators include eventually ϕ ≡ true U ϕ
and globally ϕ ≡ ¬ ¬ϕ. The quantified formulas ∃π and
∀π are read as “along some trace π” and “along all traces π”,
respectively.

A formula is closed (i.e., a sentence) if all trace variables
used in the formula are quantified. We assume, without loss
of generality, that all formulas we discussed in this paper are
closed, and no variable is quantified twice. We use Vars(ϕ)
for the set of trace variables used in formula ϕ.

2) Semantics: An interpretation T = 〈Tπ〉π∈Vars(ϕ) of a
formula ϕ consists of a tuple of sets of traces, one set Tπ
per trace variable π in Vars(ϕ). We use Tπ for the set of
traces assigned to π. The idea here is to allow trace quantifiers
to range over different systems. We use this feature to solve
mapping synthesis problem as explained in Section IV. With
this feature, each set of traces comes from its own Kripke
structure. Thus, the set of traces that π can range over, Tπ ,
comes from a specific Kπ , i.e., Tπ = Traces(Kπ). We use
K = 〈Kπ〉π∈Vars(ϕ) to denote a family of Kripke structures. To
simplify, we write T = Traces(K) to denote the set of sets
of traces derived from the family of Kripke structures. The
multi-model nature of our interpretation allows us to synthesize
the mappings between any arbitrary two models KA and KB

represented by two different Kripke structures.

The semantics of HyperLTL is defined with respect to a
trace assignment, which is a partial map Π: Vars(ϕ) ⇀ Σω .
The assignment with an empty domain is denoted by Π∅. Given
a trace assignment Π, a trace variable π, and a trace t ∈ Σω ,
we denote by Π[π → t] the assignment that coincides with
Π everywhere except at π, which in Π[π → t] is mapped to
trace t. The satisfaction of a HyperLTL formula ϕ is a binary
relation |= that associates a formula to the models (T ,Π, i)
where i ∈ Z≥0 is a pointer that indicates the current evaluating
position. The semantics of HyperLTL is defined in Fig. 2.

We say that an interpretation T satisfies a HyperLTL
formula ϕ, denoted by T |= ϕ, if (T ,Π∅, 0) |= ϕ. We say
that a family of Kripke structures K satisfies a specification ϕ,
denoted by K |= ϕ, if it holds that Traces(K) |= ϕ.

It is often the case that the number of Kripke structures
in the family K is not equal to the number of quantifiers in
the HyperLTL formula ϕ that K is checked against. In such
cases, we need to specify explicitly which trace variable in ϕ
corresponds to which Kripke structure in K. We do this by
appropriately subscripting trace variables in ϕ. For example,
if K = 〈KA,KB ,KC〉 and ϕ = ∀πA.∃πC .∀πB .∃π′A.ψ, then
πA and π′A correspond to traces of KA, πB to traces of KB ,
and πC to those of KC . In other words, K |= ϕ means that
〈Traces(KA),Traces(KC),Traces(KB),Traces(KA)〉 |=
ϕ. A special case is when K contains only one single Kripke
structure K. In such a case, we do not subscript the trace
variables of ϕ as they all implicitly correspond to traces of K.



(T ,Π, 0) |= ∃π. ψ iff there is a t ∈ Tπ, such that (T ,Π[π → t], 0) |= ψ,

(T ,Π, 0) |= ∀π. ψ iff for all t ∈ Tπ, such that (T ,Π[π → t], 0) |= ψ,

(T ,Π, i) |= aπ iff a ∈ Π(π)(i),

(T ,Π, i) |= ¬ψ iff (T ,Π, i) 6|= ψ,

(T ,Π, i) |= ψ1 ∨ ψ2 iff (T ,Π, i) |= ψ1 or (T ,Π, i) |= ψ2,

(T ,Π, i) |= ψ iff (T ,Π, i+ 1) |= ψ,

(T ,Π, i) |= ψ1 U ψ2 iff there is a j ≥ i for which (T ,Π, j) |= ψ2 and

for all k ∈ [i, j), (T ,Π, k) |= ψ1,

Fig. 2: Semantics of HyperLTL.

C. Running Example: Enforcing Non-Interference

We use the following example to clarify the preliminary
concepts in this section as well as the notion of mapping
synthesis which will be formalized in Section III.

Consider the Kripke structure KA shown in Fig 3 repre-
senting an abstract model of communication between three
parties Alice, Bob, and Eve. In addition to the states S =
{s0, s1, . . . , s6}, this system also has a Boolean state variable
sec representing the secret (not modeled as a state for reasons
of space). Thus, the complete state of KA is the pair (sec, s),
where s ∈ S. Hence, KA has a total of 2×7 = 14 states (not all
these states are reachable). The state variable sec is initialized
non-deterministically to either 0 or 1. Hence, KA has two
possible initial states: (0, s0) and (1, s0). After initialization,
the value of sec remains constant. The conditions sec = 0
and sec = 1 on the transitions (s4, s5) and (s4, s6) mean that
the corresponding transition exists only if the value of sec
satisfies the condition. For instance, there is a transition from
(0, s4) to (0, s5), and also from (1, s4) to (1, s6), but there is
no transition from (1, s4) to (1, s5). The terminating states are
those with self-loops, i.e., states s2, s3, s5, and s6.

The set depicted inside each state is the label of that state.
The intuition behind the atomic propositions is as follows.
Each message communication is of the form from.to.content.
For example, Alice.Bob.sec indicates that Alice sends the secret
to Bob, and Bob.Eve.pub means that Bob sends Eve some
arbitrary public message. The information possessed by a party
is represented by party info. For example, Bob sec means that
Bob knows the value of the secret, and Eve secNonEmpty
means that Eve knows that the value of the secret message
is not empty, but Eve does not know the actual value of the
message.

The security property of non-interference [30] requires
that low-security variables should be independent from high-
security variables, thus, preserving secure information flow.
Let us illustrate non-interference on our example. Assume that
in KA, the state variable sec is a high-security variable and
the information that Eve knows (i.e., Eve secNonEmpty) is
a low-security variable. Non-interference can be expressed by
the following HyperLTL formula:

ϕNI =∀π1.∃π2.(secπ1 6↔ secπ2) ∧
(Eve secNonEmptyπ1

↔ Eve secNonEmptyπ2
)

{}
s0

{Alice.Bob.sec}

s1

{Bob.Eve.pub}

s2

{Alice.Bob.sec
Bob sec}

s3

{Bob.Eve.pub,
Bob sec}

s4

{Bob.Eve.pub,
Bob sec}

s5

{Bob.Eve.pub,
Bob sec,

Eve secNonEmpty}

s6

sec ∈ {0, 1}
sec = 0

sec = 1

Fig. 3: Kripke structure KA

In our example, KA violates the non-interference property,
that is, KA 6|= ϕNI. Consider trace t1 corresponding to the
path s0s1s4s6, where initially sec = 1. Observe that when
sec = 1, transition (s4, s6) is taken from state s4 and
Eve secNonEmpty holds in s6. Now, according to ϕNI, for
any such trace t1, we must be able to find another trace t2 of
KA, such that (1) t2 has a different value of sec than t1 and
(2) at each step Eve secNonEmpty holds at t2 if and only if
it holds at t1. The first constraint implies that sec must be 0
in the initial state of t2. The second constraint implies that at
the fourth step, Eve secNonEmpty must hold in t2 (because it
holds at the same step in t1). But this means that t2 must also
follow the path s0s1s4s6, which is impossible, since sec = 0
in t2, which violates the condition from s4 to s6. Thus, we
cannot find such a trace t2, which means that KA 6|= ϕNI.

In the sequel we will use this running example to show how
mapping synthesis can be used to enforce non-interference.

III. PROBLEM STATEMENT

The mapping synthesis problem was introduced in [38].
Mapping synthesis relies on the notion of mapping composi-
tion, a generalization of parallel composition, where processes
are allowed to synchronize over actions that are not common
to their alphabets. In this paper, we use a different variant
of the mapping composition operator than the one defined
in [38]. Specifically, mapping composition in [38] is defined
as an asynchronous parallel composition of two labeled tran-
sition systems, where mapping controls the synchronization
of certain transitions by mapping the labels annotating the



transitions. In our setting, mapping composition is defined as
a synchronous parallel composition of two Kripke structures,
where mapping controls the set of atomic propositions anno-
tating the product states. This technical change allows us to
handle more easily specification languages like HyperLTL that
refer to atomic propositions on system states. As it turns out,
it also results in a simpler definition of mapping composition
as compared to [38].

Definition 2: Let KA = 〈SA, S0
A, δA,APA, LA〉 and

KB = 〈SB , S0
B , δB ,APB , LB〉 be two Kripke structures such

that APA ∩ APB = ∅. A mapping is a partial function
m : APA ⇀ APB . A pair of states (sA, sB) ∈ SA × SB
satisfies the mapping condition, denoted MapCond(sA, sB), iff
the following holds:

∀a ∈ L(sA).∀b ∈ APB .
(
m(a) = b

)
→
(
b ∈ L(sB)

)
.

�

That is, if a is an atomic proposition that holds in state sA,
and a is mapped by m to atomic proposition b, then atomic
proposition b must hold in state sB .

Definition 3: The mapping composition of two Kripke
structures KA = 〈SA, S0

A, δA,APA, LA〉 and KB =
〈SB , S0

B , δB ,APB , LB〉 w.r.t. mapping m is defined as a
Kripke structure (KA ‖m KB) = 〈S, S0, δ,AP, L〉, where

• S = {(sA, sB) ∈ SA × SB | MapCond(sA, sB)}

• S0 = S ∩ (S0
A × S0

B)

• δ = {
(
(sA, sB), (s′A, s

′
B)
)
∈ S × S |

(sA, s
′
A) ∈ δA ∧ (sB , s

′
B) ∈ δB}

• AP = APA ∪ APB

• L : S → 2AP, where L((sA, sB)) = L(sA) ∪ L(sB)

�

That is, a state in the composite system (KA ‖m KB)
is a product state (sA, sB) satisfying the mapping condition.
An initial state of (KA ‖m KB) is a pair of initial states of
KA and KB such that the pair again satisfies the mapping
condition. A transition of (KA ‖m KB) consists in both KA

and KB moving synchronously. The set of atomic propositions
of (KA ‖m KB) contains all atomic propositions of KA plus
those of KB . And the set of atomic propositions holding at a
product state (sA, sB) contains all propositions holding at sA
plus all those holding at sB . Note that the mapping condition
guarantees that if a holds in state sA and a maps to b, then
b holds at sB , which implies that both a and b will hold at
the product state (sA, sB). This is important because if a is
mapped to b and satisfaction of a property in KA depends
on a, this satisfaction should carry to the mapped proposition,
which is b.

We can now define the mapping synthesis problem for
HyperLTL:

The HyperLTL mapping synthesis problem. Given
two Kripke structures KA and KB , and a HyperLTL
formula ϕ, find, if there exists, a valid mapping, i.e.,
a mapping m such that (KA ‖m KB) |= ϕ.

{}
s0

{S.R.pub,
R pub}

s1

{S.R.sec,
R sec}

s2
{S.R.sec,
R pub,
R sec}

s3

Fig. 4: A Kripke structure KB

In the above definition of mapping synthesis, the search
space of possible mappings m is left unconstrained. This is
done for reasons of simplicity, so that the problem defini-
tion does not become overly complicated. In our approach
and implementation, we allow the user to specify additional
constraints. For example, the user may require the mapping
function to be injective, surjective, or bijective. The user may
also disallow the empty mapping (i.e., the function defined
nowhere), which is a-priori a possible candidate since map-
pings are partial functions. Finally, the user may also restrict
the possible mappings of certain atomic propositions. For
instance, the user may specify that only a subset of APA is to
be mapped, or that a certain proposition in APA can only be
mapped to some of the propositions in APB .

Also, notice that the statement of the problem does not
require that KA |= ϕ, i.e., KA does not have to necessarily
satisfy hyperproperty ϕ. This is desirable in order to be able
to model scenarios like our running example, where the goal
is to enforce ϕ during mapping. Note that other properties
than ϕ that KA may satisfy are not necessarily preserved by
mapping. We, thus, emphasize that any other property, say ϕ′,
that the designer requires the system to satisfy after mapping
has to be explicitly included as a part of ϕ, e.g., by taking the
conjunction ϕ ∧ ϕ′.

Example: Let Kripke structure KB in Fig. 4 represents
a communication platform between a sender S and a receiver
R for the abstract model KA in Fig. 3 and the non-interference
policy ϕNI discussed in Section II-C. The platform only allows
S to either (1) send a secret message to R (i.e. s0s2ω), or
(2) send R a public message first then followed by a secret
messages (i.e. s0s1s1s3ω). Our goal is to find a mapping m,
such that (KA ‖m KB) |= ϕNI. In the following section, we
provide a solution to this problem and we illustrate on this
example some valid and invalid mappings.

Synthesis of invalid mappings: In addition to synthe-
sizing valid mappings, our technique can also be used to
synthesize invalid mappings, i.e., mappings that satisfy ¬ϕ,
i.e., mappings that violate ϕ. We can achieve this simply by
negating ϕ in the definition of the mapping synthesis problem.
Why would we ever want to synthesize invalid mappings? This
could be useful, for example, for debugging purposes. If no
invalid mapping exists, this might indicate a trivially satisfied
specification ϕ. There are also other reasons why we might
want to synthesize invalid mappings, e.g., in order to exhibit
some bad (insecure) implementation choices, that we might
want to be certain to avoid. Overall, our method is versatile
enough and can be used both for ϕ and ¬ϕ.



IV. REDUCING HYPERLTL MAPPING SYNTHESIS TO
HYPERLTL MODEL CHECKING

In this section, we provide a method to reduce the mapping
synthesis problem to HyperLTL verification and we prove the
correctness of the method. We also demonstrate this method
on our running example.

A. The Reduction

In a nutshell, our reduction works as follows. In an instance
of the mapping synthesis problem, we are given two Kripke
structures KA and KB , and a HyperLTL formula ϕ. The goal
is to find (if there exists) a mapping m such that (KA ‖m
KB) satisfies ϕ. In our reduction, we will construct a new
Kripke structure KM which represents the set of all candidate
mappings.2 We will also construct a new HyperLTL formula
ΦABM = ∃πM .Ξ, which encodes the existence of a good
mapping (the quantified trace variable πM is instantiated by
traces of KM ). The idea is that verifying ∃πM .Ξ is analogous
to synthesizing a mapping for KA and KB . Furthermore, Ξ
encodes the original formula ϕ adapted to the verification
problem. Then, finding a valid mapping m is reduced to
checking whether the family 〈KM ,KA,KB〉 satisfies ΦABM.
We now present this method in detail.

1) The Kripke structure KM : Consider two
Kripke structures KA = 〈SA, S0

A, δA,APA, LA〉
and KB = 〈SB , S0

B , δB ,APB , LB〉. We denote by
Mappings(APA,APB) the set of all possible mappings,
that is, the set of all possible partial functions from APA
to APB . In principle, each proposition of KA can be
mapped to any one of the propositions of KB , or to none,
since mappings are partial functions. This gives a total
of |Mappings(APA,APB)| = (|APB | + 1)|APA| possible
mappings.

We construct Kripke structure KM as follows:

• SM = {sm | m ∈ Mappings(APA,APB)}

• S0
M = SM

• δM = {(s, s) | s ∈ SM}

• APM = APA × APB

• LM : SM → 2APM s.t. for any sm ∈ SM , we have
L(sm) = {(a, b) ∈ APM | m(a) = b}.

The set of states SM encodes the set of all possible
mappings. Note that APA and APB are finite sets, therefore
the number of possible mappings is also finite. Thus, KM

is a finite-state Kripke structure. Choosing a mapping means
selecting one of the initial states in KM . Once chosen, this
choice remains fixed. This is ensured by the set of self-loops
of each state of KM . Observe that each proposition in APM
is a pair (a, b), where a is a proposition of KA and b is a
proposition of KB . The idea is that proposition (a, b) holds at
a given state s of KM iff the mapping represented by s maps
a to b. This is ensured by the labeling function LM .

2This set is typically very large, and therefore the state space of KM is
also large. However, fortunately, we can represent KM symbolically and not
explicitly, which allows us to combat state explosion.

M0

s0

M1

s1

M2

s2

M624

s624

...

Fig. 5: The Kripke structure KM derived from KA

and KB of Figs. 3 and 4.

Example: Consider the two Kripke structures KA and
KB in Figs. 3 and 4, respectively. Observe that there are four
atomic propositions in each of them: |APA| = |APB| = 4.
Then, the Kripke structure KM has (4 + 1)4 = 625 states
(see Figure 5). M0,M1,M2, . . . ,M624 correspond to the 625
possible mappings between KA and KB. Each mapping is
represented by a subset of APM (including the empty subset
which represents the empty mapping). In this example, we
have the following possible mappings:

M0 = {}
M1 = {(Alice.Bob.sec,S.R.pub)}
M2 = {(Bob.Eve.pub,S.R.pub)}
M3 = {(Alice.Bob.sec,S.R.pub),

(Bob.Eve.pub,S.R.pub)}

and so on, up to

M624 = {(Alice.Bob.sec,S.R.pub),

(Bob.Eve.pub,S.R.sec),

(Bob sec,R sec),

(Eve secNonEmpty ,R sec)}.

2) The Global HyperLTL Formula ΦABM: Let the original
HyperLTL formula ϕ be of the form: Q1π1.Q2π2 . . .Qnπn.ψ
where ψ is quantifier-free and each Qi ∈ {∀,∃}, for 1 ≤ i ≤ n.
Then, ΦABM is constructed as follows:

ΦABM
def
= ∃πM . Ξ

Ξ
def
= Q1πA1

.Q1πB1
. . . .QnπAn

.QnπBn
.Ψ

Ψ
def
= ϕmap1 ◦1 ϕmap2 ◦2 . . . ϕmapn ◦n ψnew

where πM ranges over KM , trace variables πAi
range over

KA, while πBi
range over KB , for 1 ≤ i ≤ n. Also,

◦i = ∧ if Qi = ∃ and ◦i = → if Qi = ∀, where ◦i
has precedence over all the preceeding such operators. The
subformulas ϕmapi and ψnew are defined below. Intuitively,
existence of a trace of KM such that Ξ is satisfied encodes
existence of a valid mapping. In ϕ, each trace variabe πi ranges
over the traces of KA ‖m KB . In ΦABM, we replace πi by
two trace variables πAi

and πBi
ranging over KA and KB ,

respectively. These variables together with ϕmapi encoding the
mapping composition constraints describe the requirements of
composite traces of KA ‖m KB .



We now proceed to define the subformulas ϕmapi and ψnew.
First, we define, for 1 ≤ i ≤ n:

ϕmapi
def
=

∧
(a,b)∈APM

(
(a, b)πM

→ (aπAi
→ bπBi

)
)

Intuitively, ϕmapi states that if (a, b) holds in a trace of KM

(i.e., if a is mapped to b in the selected mapping), then
whenever a holds at a certain step in the trace of KA, b
must hold at the same step in the trace of KB . This ensures
that the pair of traces from KA and KB fulfill the mapping
composition requirements.

We next construct ψnew to be the subformula obtained by
replacing each aπi

∈ APA in ψ with aπAi
, for 1 ≤ i ≤ n.

B. Illustration of the Reduction on our Running Example

Recall the Kripke structures KA and KB from Figs. 3
and 4, and the HyperLTL formula ϕNI. Our goal is to find
a mapping m, such that (KA ‖m KB) |= ϕNI, by reducing
it to a HyperLTL verification problem of checking whether
the family 〈KM ,KA,KB〉 satisfies the constructed global
formula w.r.t. ϕNI, called ΦNI−ABM. We now use this running
example to demonstrate the construction of ΦNI−ABM and how
the satisfiability of ΦNI−ABM gives us a valid mapping that
enforces KA to satisfy the property ϕNI.

Recall the non-interference property introduced in Sec-
tion II. The HyperLTL formula ϕNI can be rewritten as follows:

ϕNI =∀π1.∃π2. ψNI

ψNI =(secπ1
6↔ secπ2

) ∧
(Eve secNonEmptyπ1

↔ Eve secNonEmptyπ2
),

where ψNI is the quantifier-free part of ϕNI. According to our
definition, the formula ΦNI−ABM is thus:

ΦNI−ABM = ∃πM .∀πA1
.∀πB1

.∃πA2
.∃πB2

.

(ϕmap1 → (ϕmap2 ∧ ψNI−new ))

We next present in detail how the elements ϕmap1 , ϕmap2 , and
ψNI−new are constructed.

First, the mapping subformulas ϕmap1 and ϕmap2 are as
follows:

ϕmap1 =
∧

(a,b)∈APM

(
(a, b)πM

→ (aπA1
→ bπB1

)
)

ϕmap2 =
∧

(a,b)∈APM

(
(a, b)πM

→ (aπA2
→ bπB2

)
)

The purpose of ϕmap1 and ϕmap2 is to make sure that the labels
of traces fulfill the mapping constraints. That is, for all a ∈
APA and b ∈ APB , if m(a) = b, whenever a holds at a certain
step in the trace of KA, b must hold at the same step in the
trace of KB .

For instance, if a mapping chose to map
Alice.Bob.secπAi

to S.R.secπBi
, then ϕmap1 and ϕmap2

will impose (Alice.Bob.secπA1
→ S.R.secπB1

) and
(Alice.Bob.secπA2

→ S.R.secπB2
), respectively.

Next, we construct ψNI−new by replacing each aπi
∈ APA

in ψNI with aπAi
for i ∈ {1, 2} as follows,

ψNI−new = (secπA1
6↔ secπA2

) ∧
(Eve secNonEmptyπA1

↔ Eve secNonEmptyπA2
)

Finally, by using the bounded model checking approach
proposed in [35] , we check whether:

〈KM ,KA,KB〉 |= ΦNI−ABM,

is satisfiable (SAT) or not. The solver returns SAT, which
implies that the outer-most existentially quantified variable πM
has been instantiated by a witness trace that represents a valid
mapping. The witness trace represents the following mapping:

Mvalid = {(Alice.Bob.sec, S.R.sec),

(Bob.Eve.pub, S.R.pub)}.

Let us evaluate Mvalid together with KA and KB in Figs. 3
and 4, respectively. As we discussed in Section II, the path
s0s1s4s6 in KA corresponds to Alice sending Bob a non-empty
secret, followed by Bob sending Eve a public message but
leaking the information about “secret is not empty” to Eve, thus
violating ϕNI. However, if we map Alice.Bob.sec to S.R.sec,
and Bob.Eve.pub to S.R.pub, as prescribed by Mvalid, then the
path s0s1s4s6 is eliminated after mapping composition. This is
because the corresponding trace on KB, i.e. S.R.sec followed
by S.R.pub, does not exist. Hence, the path that violates ϕNI

is now eliminated, resulting in Mvalid begin indeed a mapping
that enforces non-interference.

As mentioned at the end of Section III, our method is
also capable of finding invalid mappings, i.e., mappings that
violate the given HyperLTL formula. Let us illustrate this on
our running example. First, we negate ϕNI to obtain:

¬ϕNI = ∃π1.∀π2. ¬ψNI

Next we construct the global HyperLTL formula Φnot−NI−ABM
w.r.t. ¬ϕNI, as follows:

Φnot−NI−ABM = ∃πM .∃πA1 .∃πB1 .∀πA2 .∀πB2 .

(ϕmap1 ∧ (ϕmap2 → ¬ψNI−new ))

Once again, the solver returns SAT meaning that it now found a
mapping violating non-interference. In particular, the following
mapping is invalid:

Minvalid = {(Alice.Bob.sec, S.R.pub),

(Bob.Eve.pub, S.R.sec)}

This mapping allows the path s0s1s4s6 on KA to happen,
with the corresponding path s0s1s3s3 on KB. Thus, under
Minvalid the mapping composition of KA and KB violates
non-interference.

C. Proof of Correctness

We now present our main theoretical result, namely, the
correctness of our reduction method. That is, we show that the
answer to the mapping synthesis problem is affirmative if and
only if the answer to the corresponding HyperLTL verification
problem is positive.



Theorem 1: Given a closed HyperLTL formula ϕ of the
form Q1π1.Q2π2 . . .Qnπn.ψ and Kripke structures KA and
KB , there exists a mapping m such that (KA ‖m KB) |= ϕ iff
〈KM ,KA,KB〉 |= ΦABM, according to the above construction.

Proof:

(⇒) Suppose that there exists a mapping m such that
(KA ‖m KB) |= ϕ. We need to show that 〈KM ,KA,KB〉 |=
ΦABM. We proceed by induction on the number of quantifiers
in ϕ.

For the base case where n = 1, we have ϕ = Q1π1.ψ.
Then, ΦABM will be of the form ∃πM .Q1πA1

.Q1πB1
. ϕmap1 ◦1

ψnew, where Q1 ∈ {∀,∃}. We first instantiate the outermost
quantifier ∃πM of ΦABM. There exists a unique state s ∈ KM

such that the label of s corresponds to mapping m, that is, for
all (a, b) ∈ L(s) we have m(a) = b. In KM , by construction,
we instantiate πM with tM = sω . We now distinguish two
cases. If Q1 = ∃, then there exists a trace t1 ∈ (KA||mKB),
such that(

Traces(KA ‖m KB),Π[π1 → t1], 0
)
|= ψ.

For existential quantifier, ◦1 is ∧, meaning that tM , tA1 , and
tB1 must satisfy ϕmap1 ∧ ψnew. The projection of t1 on KA

and KB derives two traces tA1 and tB1 , respectively. Since
t1 ∈ Traces(KA ‖m KB), it implies that traces tA1

and tB1

are obtained according to mapping function m. This in turn
ensures that 〈tM , tA1

, tB1
〉 |= ϕmap1 . Because for each a ∈

APA and b ∈ APB , if m(a) = b, then ϕmap1 is satisfiable only
if (aπA1

→ bπB1
) always holds. That is, the instantiated πA1

and πB1
fulfills the mapping function m. From here, tA1

and
tB1

are sufficient to instantiate πA1
and πB1

to satisfy ϕmap1 .
Since t1 satisfies ψ, so tA1

also satisfies ψnew. That is,(
Traces(KM ,KA,KB),Π[πM → tM ,

πA1 → tA1 ,

πB1
→ tB1

], 0
)
|= ϕmap1 ∧ ψnew

If Q1 = ∀, we have ◦1 is →, meaning that tM , tA1
, and

tB1
must satisfy ϕmap1 → ψnew. The segment Q1πA1

.Q1πB1

represents all paths on the composed model of KA and KB .
Take an arbitrary pair of traces tA1

∈ Traces(KA) and tB1
∈

Traces(KB). If 〈tM , tA1
, tB1
〉 6|= ϕmap1 , then ϕmap1 → ψnew is

vacuously true and, hence, the HyperLTL verification problem
is consequently true as well. Now, consider the case where
〈tM , tA1 , tB1〉 |= ϕmap1 . By the assumption of the existence
of a valid mapping function m, by composing tA1 and tB1

into one trace t1 according to m, we have:(
Traces(KA ‖m KB),Π[π1 → t1], 0

)
|= ψ,

because π1 is universally quantified and can be instantiated
by any arbitrary trace from the mapping composition. Again,
since we are able to obtain tA1 and tB1 by projecting t1 on
KA and KB , tA1 and tB1 will be a pair of traces that fulfills
ϕmap1 and ψnew. Hence, the following always holds(

Traces(KM ,KA,KB),Π[πM → tM ,

πA1
→ tA1

,

πB1 → tB1 ], 0
)
|= ϕmap1 → ψnew

For inductive step, the inductive hypothesis is as fol-
lows. Suppose there is a mapping function m : APA ⇀
APB that fulfills (KA ‖m KB) |= ϕ , where ϕ =
Q1π1.Q2π2 . . .Qkπk.ψ , it is true that 〈KM ,KA,KB〉 |=
ΦABM for any k ≥ 1. We now want to show k + 1 holds.

From inductive hypothesis, we know for any k, each
assignment [πi → ti] is valid, where 1 ≤ i ≤ k regardless
of whether Qi = ∀ or Qi = ∃. As a result, the following:(

Traces(KA||mKB),Π[π1 → t1,

π2 → t2,

...

πk → tk], 0
)
|= ψ,

must holds. It implies that we are able to construct the
HyperLTL formula for any 1 ≤ i ≤ k by projecting ti to KA

and KB and obtain πAi
and πBi

, respectively, as follows:(
Traces(KM ,KA,KB),Π[πM → tM ,

πA1 → tA1 ,

πB1
→ tB1

,

πA2
→ tA2

,

πB2 → tB2 ,

...
πAk
→ tAk

,

πBk
→ tBk

], 0
)
|=

(ϕmap1 ◦1 ϕmap2 ◦2 . . . ϕmapk ◦k ψnew)

From here, for Qk+1, the instantiation of πAk+1
and πBk+1

can be done similarly with the same approaches as in the base
case, depending on the corresponding tk+1 and Qk+1, where
Qk+1 ∈ {∃,∀}. Hence, after instantiating each trace variable
in the HyperLTL formula, the following must hold:(

Traces(KM ,KA,KB),Π[πM → tM ,

πA1
→ tA1

,

πB1 → tB1 ,

πA2
→ tA2

,

πB2
→ tB2

,

...
πAk
→ tAk

,

πBk
→ tBk

,

πAk+1
→ tAk+1

,

πBk+1
→ tBk+1

], 0
)
|=

(ϕmap1 ◦1ϕmap2 ◦2 . . . ϕmapk ◦kϕmapk+1
◦k+1ψnew)

This is indeed the case because when 〈t1, t2, . . . , tk+1〉 |=
ψ in the composed Kripke structure (KA ‖m KB), then
by construction, the mapping and the projections of traces
〈t1, t2, . . . , tk+1〉 on KM , KA and KB satisfy ψnew, that is,
〈tM , tA1 , tB1 , tA2 , tB2 , . . . , tAk+1

, tBk+1
〉 |= ψnew.



(⇐) We now prove the reverse direction. Suppose
(KM ,KA,KB) |= ΦABM. Then πM can be instantiated by
some tM and each trace variable can be instantiated w.r.t. its
quantifier. We now proceed as follows.

• Mapping Function. The trace tM is a trace of the
form tM = sω where s ∈ SM is a unique state. The
mapping function m is defined based on the label of
s. That is, for all (a, b) ∈ L(s), m(a) = b.

• Mapping Composition. For a quantifier Qi = ∀,
each trace variable πAi and πBi is instantiated by
all possible pair of traces tAi

∈ Traces(KA) and
tBi
∈ Traces(KB), respectively. The formula ϕmapi

checks if each pair 〈tAi
, tBi
〉 fulfills the mapping.

By having ϕmapi be followed by an implication, we
only enforce the pairs which fulfill the mapping m, to
satisfies the rest of the formula. Hence, each pair that
satisfies ϕmapi corresponds to the projection of each
ti ∈ Traces(KA ‖m KB).
For a quantifier Qi = ∃, πAi and πBi are instantiated
by some tAi and tBi . Since ◦i = ∧, then tAi and tBi

must also be a pair that satisfies ϕmapi . Thus, tAi and
tBi

are sufficient to compose ti as a witness of the
existential quantifier.

• Hyperproperty. Since the 〈KM ,KA,KB〉 |= ΦABM,
we have, 〈tA1

, tB1
, . . . , tAn

, tBn
〉 |= ψnew. By com-

posing each pair of traces 〈tAi
, tBi
〉 as a composed

trace ti in the traces of (KA ‖m KB) , we have
〈t1, t2, . . . , tn〉, such that 〈t1, t2, . . . , tn〉 |= ψ.

V. APPLICATION: SECURE REFINEMENT

It is well-known that traditional notions of refinement (e.g.,
ones based on trace inclusion [34]) do not preserve certain
types of security properties, such as non-interference [40].
Alternative definitions of refinement have been proposed to
ensure that desired security properties of an abstract system
are preserved by its implementations [4], [37], [39]. As an
application, we describe how our mapping synthesis technique
can be used to synthesize refinement mappings that preserve
security properties that are specified as hyper-properties.

A. Secrecy Property

We adopt the notion of secrecy-preserving refinement pro-
posed by Alur et al. [4], as it is general enough to capture
a wide range of security properties, including noninterfer-
ence. In [4] the authors prove that their notion of refinement
preserves what they call secrecy properties, but only hint at
the possibility of automated techniques for verifying that a
concrete program is a secrecy-preserving refinement of an
abstract program. We take one step further and show how our
approach can be used to synthesize such a refinement mapping.

Consider Kripke structure K = 〈S, S0, δ,AP, L〉 and trace
property P ⊆ Σω . Some subset of the atomic propositions are
designated to be observable: APobs ⊆ AP. Conceptually, these
propositions represent parts of the state that are visible to the
environment (e.g., an attacker), while the rest remain hidden
(e.g., internal actions). In addition, given a set T ⊆ Σω of

traces, let ≈ ⊆ T × T be an equivalence relation on pairs of
traces with respect to the propositions in APobs.

Definition 4: Given a trace property P and a set of traces
T , the secrecy property, Sec(T, P,≈), is defined as follows:

Sec(T, P,≈) ≡ ∀t ∈ T.∃t′ ∈ T.(t ∈ P ) → (t ≈ t′ ∧ t′ /∈ P )

�

Then, we say that K satisfies the secrecy of P for given
≈ if and only if K satisfies Sec(TK , P,≈). Intuitively, P
states that sensitive information is to be protected: Given an
execution of the system represented by trace t, we wish to
prevent the attacker from knowing whether or not t ∈ P .
One way to protect the secret, as stated in Definition 4
is to introduce uncertainty into the attacker’s knowledge by
allowing an additional trace t′ that is observationally equivalent
to t but does not satisfy P . Note that secrecy as defined above
is a hyperproperty.

Hyperproperty Sec(T, P,≈) can be instantiated with differ-
ent equivalence relations (≈). Let us define a notion of strong
equivalence relation ≈s between a pair of traces, t, t′ ∈ T as
follows. Let E : Σ → Σ be an erasing function that hides all
non-observable propositions from an element of a trace; i.e.,
given e ∈ Σ, E(e) = e′, where e′ is derived as e ∩ APobs. If the
latter results in an empty set (e ∩ APobs = ∅), special symbol
τ is assigned as e′; conceptually, τ represents internal states
that are hidden from an observer. With abuse of notation, we
define E over traces as well, where E(t) returns the trace that
results from applying E to every element in trace t. Then, we
say that a pair of traces t and t′ are strongly equivalent (i.e.,
t ≈s t

′) if and only if E(t) = E(t′); i.e., the traces match each
other in their observable parts.

Let us define another notion of equivalence, called weak
equivalence relation ≈w. Let Ew be similar to the erasing
function E introduced above, except it removes all τ from
given trace t; e.g., Ew(e) = ε if L(e) ∩ APobs = ∅ (we assume
that ε is treated as an non-existent element and removed from
traces; i.e., t = e0εe1εe2 = e0e1e2). Then, a pair of traces
t and t′ are weakly equivalent (i.e., t ≈w t′) if and only if
Ew(t) = Ew(t′). This relation is also called a time-insensitive
equivalence relation, as it considers a pair of traces to be
equivalent even if they do not agree on the number of internal
computational steps.

As we will illustrate in Section VI, an implementation that
preserves secrecy under one notion of observational equiv-
alence (e.g., ≈w) might not do so under a different notion
(e.g., ≈s). By allowing ≈ to be provided as a parameter, our
technique can be used to synthesize a refinement mapping (if
it exists) under varying notions of observational equivalence.

B. Secrecy-Preserving Refinement Mapping

Consider a pair of Kripke structures Ksp = 〈Ssp , S
0
sp , δsp ,

APsp , Lsp〉 and Kimp = 〈Simp , S
0
imp , δimp , APimp , Limp〉,

representing an abstract specification and its concrete imple-
mentation, respectively. A refinement mapping mr : Simp →
Ssp is a function that relates the states of the implementation to
those of the abstract specification [1]. With abuse of notation,
we define mr to be applicable over traces as well, where
mr(timp) returns the result of applying mr to every state in



timp ∈ Timp (i.e., mr(timp) ∈ Tsp). We say that mr is a valid
refinement mapping if and only if it satisfies the following two
conditions:

• Simulation condition: The abstract specification sim-
ulates the implementation; i.e., every behavior of
Kimp is also a behavior of Ksp :

∀c, c′ ∈ Simp .∀a ∈ Ssp .a = mr(c) ∧ (c, c′) ∈ δimp →
∃a′ ∈ Ssp .(a, a

′) ∈ δsp ∧ a′ = mr(c
′)

• Secrecy-preserving: Given Ksp |= Sec(Tsp , P,≈),
the implementation does not leak the secrecy of P :

∀t ∈ Timp .mr(t) ∈ P →
∃t′ ∈ Timp .t ≈ t′ ∧mr(t

′) /∈ P

For the problem of refinement mapping synthesis that we con-
sider in Sections V and VI, we assume that the labeling func-
tions in the Kripke structures (i.e., Limp and Lsp) are injective.
We believe that this is a reasonable assumption to make, as
program states can be defined uniquely by assignments to state
variables (which are represented by propositions).

C. Formulation as Mapping Synthesis with HyperLTL

We describe how the task of finding a secrecy-preserving
refinement mapping can be formulated as an instance of the
mapping synthesis problem. One complication is that our no-
tion of mapping is between propositions, whereas a refinement
mapping is defined over states. As a workaround, a given
Kripke structure is first flattened into another structure where
each state is assigned exactly one proposition that encodes the
set of all propositions in the original state.

Flattened Kripke Structure. Given K = 〈S, S0, δ,AP, L〉,
let flat(K) = 〈Ŝ, Ŝ0, δ̂, ÂP, L̂〉 where:

• Ŝ = {ŝ | ∃s ∈ S.ŝ = f(s)}

• Ŝ0 = {ŝ | ∃s ∈ S0.ŝ = f(s)}

• δ̂ = {(ŝa, ŝb) | (f−1(ŝa), f−1(ŝb)) ∈ δ}

• ÂP = 2AP

• L̂(ŝ) = {L(f−1(ŝ))} for each ŝ ∈ Ŝ

where f : S → Ŝ is a bijection between the states of K and
its flattening. For example, for state s ∈ S with L(s) = {a, b},
its corresponding state ŝ = f(s) in the flattened structure is
assigned label ps (i.e., L̂(ŝ) = {ps}) where ps = {a, b}.

Refinement Mappings. Given Ksp and Kimp , consider a
pair of Kripke structures KA = 〈SA, S0

A, δA,APA, LA〉 and
KB = 〈SB , S0

B , δB ,APB , LB〉 such that KA = flat(Kimp)
and KB = flat(Ksp). Then, a mapping between KA and KB ,
m : APA ⇀ APB , can be defined in terms of mr as follows:

m = {(psA , psB ) | (L−1imp(psA), L−1sp (psB )) ∈ mr}

For convenience, we also define function Rm, which applies
m to every element in given path π = s0s1s2 . . . sn to obtain
another path π′ = s′0s

′
1s
′
2 . . . s

′
n; i.e.,

Rm(π) = π′ ↔ for each s in π,m(L(s)) = L(s′) ∧ s′ ∈ π′

Note that here the label of each state refers to the one
proposition (in the flattened structure) that encodes the original
set of atomic propositions.

Simulation Condition. We impose simulation conditions
as part of ϕmap as we introduce in Section III: Given two
flattened structures KA and KB , if (L−1A (psA), L−1A (p′sA)) ∈
δA and (psA , psB ) ∈ m, then (p′sA , p

′
sB ) ∈ m if and only if

(L−1B (psB ), L−1B (p′sB )) ∈ δB .

Observational Equivalence. The above two notions of
observational equivalence can be encoded in HyperLTL:

• For weak equivalence (≈w), we define formula eqw:

eqw(π, π′) ≡
∧

p∈APobs

(pπ ↔ pπ′)

That is, the observable variables always match in their
values in a given pair of traces

• For strong equivalence ( ≈s), in addition to the observ-
able variables, we also consider the internal steps (τ )
that do not contain any observable variables. This can
be implicitly done by only comparing the observable
variables, because pπ ↔ pπ′ is vacuously true when
a state does not contain any observable variables. In
addition, we abuse the notation here and use PCπ to
represent the encoding of the program counter for a
path variable π. The value of PC advances on each
state transition of a trace and the domain of PC is
finite. We add PC to each path variable π and π′

for strong equivalence to ensure that the given traces
advance in a lockstep with each other:

eqs(π, π
′) ≡

∧
p∈APobs

(pπ ↔ pπ′) ∧ (PCπ = PCπ′)

Secrecy Property. Given trace property P , we write P (π)
to denote that some concrete trace t assigned to π satisfies
P . Then, the secrecy property from [4] in Definition 4 can be
encoded in HyperLTL ϕsec as follows:

ϕsec = ∀π.∃π′. P (π) →
(
eq(π, π′) ∧ ¬P (π′)

)
where eq can be eqw or eqs.

Secrecy Preservation. Given KA = flat(Kimp) and KB

= flat(Ksp), let us assume that KB |= ϕsec . Given mapping
m, Kripke structure KA is said to preserve the secrecy for
P if and only if the following HyperLTL formula holds over
KA ‖m KB :

ϕsp = ∀πA.∃π′A. P (Rm(πA)) →
(
eq(πA, π

′
A) ∧ ¬P (π′A)

)
Finally, finding a valid refinement mapping that preserves the
secret P between Ksp and Kimp amounts to solving the
following mapping synthesis problem:

Secrecy-Preserving Refinement Mapping Synthesis. Given
Kripke structures Ksp and Kimp , trace property P , and
equivalence relation ≈ such that Ksp |= Sec(Tsp , P,≈), let
KA and KB be the flattening of Kimp and Ksp , respectively.
Find a mapping m : APA ⇀ APB (if it exists) such that
(KA ‖m KB) |= ϕsp .



Once we have a solution mapping m : APA ⇀ APB , it
is straightforward to convert it into its state-based equivalence
mr : Simp → Ssp :

mr = {(simp , ssp) | (Limp(simp), Lsp(ssp)) ∈ m}

If there exists at least one refinement mapping, it demonstrates
that Kimp may be used as an implementation that preserves
the secrecy in the abstract machine Ksp . On the other hand,
if no such mapping exists, Kimp cannot be used as a secure
implementation for Ksp .

Proposition 1: Given Kripke structures Ksp and Kimp ,
trace property P , equivalence relation ≈, let m be a solution
to the above mapping synthesis problem. Then, its state-based
equivalence, mr, is a valid secrecy-preserving refinement map-
ping from Kimp to Ksp .

Remarks on the direction of mapping. It is worth noting
that the direction of refinement mapping mr is from concrete
machine Kimp to abstract machine Ksp , in contrast to the
examples introduced in Sections I to III. In these earlier
examples, a mapping is used to represent a concretization
function, which decides how abstract propositions in KA are
realized as their concrete counterparts in KB ; under a valid
mapping m, the resulting machine, KA ‖m KB , preserves
a desired property but may not necessarily be a behavioral
refinement of KA. On the other hand, a refinement mapping
in this section is used to encode an abstraction function and
is imposed additional constraints (i.e., simulation conditions)
to ensure that Kimp is a behavioral refinement of Ksp .

VI. CASE STUDIES AND EVALUATION

In this section, we provide an experimental evaluation
of our approach to synthesize secrecy-preserving refinement
mappings (as described in Section V) on two different case
studies: the battleship game and a password checker. The
experimental results from the two case studies show that our
technique is able to synthesize secrecy-preserving refinement
mappings under different notions of observational equivalence,
and also scales to reasonably sized programs.

Our prototype implementation is built on top of the Hy-
perLTL bounded model checker (BMC) HyperQube [35].3 The
model checker performs two tasks: (1) generation of a QBF
formula that describes the model and the hyperproperty of
interest (called genQBF), and (2) invocation of the QBF-solver
QuAbs [46] to solve the satisfiability problem for the QBF
query. All experiments in this Section were run on a MacBook
with Intel i7 CPU @2.8 GHz and 16 GB of RAM.

A. Case Study 1: Battleship Game

Given an n×n grid, two players can place an equal number
of ships onto the grid by marking the cells that correspond
to their (i, j) coordinates. In the beginning of the game, the
positions of each player’s fleet of ships are concealed from
each other. The players will then take turns guessing the
position of one of the opponent’s ships; if the guess is correct,
the corresponding ship is removed from the game. The game
ends when one of the players has their entire fleet removed
from the game.

3Our code and case studies are available at https://bit.ly/3aJwKbf.

The secret that we wish to protect in this game is the
occupancy of a specific row (i.e., whether or not a row is
empty) to maintain fairness between the players. For example,
suppose that one of the players guesses position (3, 3) and
receives a miss. If one is able to infer that Row 3 is empty, then
in the next round, the player can avoid guessing any position
on row 3 knowing that this will result in a miss. Hence, any
implementation of the battleship game must protect the secrecy
of this information.

Algorithm 1 describes the specification Ksp that uses a 2-
dimensional array to represent the positions of the ships. Given
i and j as input, the program returns in one atomic step a hit
if the (i, j) position is marked, and a miss otherwise.

The program Kimp , shown in Algorithm 2, is a concrete
implementation of Ksp that uses a set of lists to store the
information about ship positions. Given input coordinates i and
j, Kimp first obtains the list for the i-th row, and then uses the
helper function isEmpty() and returns a miss immediately when
this row contains no ships. Otherwise, the program continues
on and checks whether the j-th position in this row is marked,
returning a hit if so.

Algorithm 1: Battleship Game Spec (Ksp)
Input: (i, j)
Output: {hit,miss}

1 boolean Board(n× n);
2 if Board[i][j] then
3 r← hit;
4 else
5 r← miss;
6 end
7 output← r;
8 return output;

Algorithm 2: Battleship Game Impl (Kimp)
Input: (i, j)
Output: {hit,miss}

1 row = Board.getRow(i);
2 if row.isEmpty() then
3 r← miss;
4 output← r;
5 return output;
6 else
7 if row.get(j) then
8 r← hit;
9 else

10 r← miss;
11 end
12 end
13 output← r;
14 return output;

In our setting, regardless of its size, every board is guaran-
teed to have some empty rows, i.e., rows with no ship. Each
program has a special Boolean value rowEmpty that will be
set to true when the input i is pointing to an empty row, and
to false otherwise. We then define trace property Prow (which
represents the secret being protected):

Prow ≡ (rowEmptyπ)

i.e., eventually the row guessed by the opponent is empty.

To find a refinement mapping mr : Simp → Ssp such
that simulation condition and secrecy preservation are both

https://bit.ly/3aJwKbf


fulfilled, we proceed as follows. The simulation condition can
be imposed as part of the mapping constrains as mentioned in
Section V, i.e., allow only mappings such that each trace in
Kimp has an abstract counterpart in Ksp . A HyperLTL property
encoding the preservation of secrecy Prow is defined as:

ϕsp ≡ ∀π.∃π′.Prow (Rm(π))→ (eq(π, π′) ∧ ¬Prow (π′))

In addition, we assume that the attacker can only observe the
final output of the programs (i.e., APobs = {Output}).

Synthesized refinement mapping: Given Kimp, Ksp,
ϕsp, and time-insensitive (weak) equivalence (i.e., eq ≡ eqw
in ϕsp), our tool was able to synthesis a valid refinement
mapping. The synthesized mapping guarantees both functional
equivalence (i.e., given the same input, both machines should
produce the same output) and preserves the secrecy of Prow.
Informally, m maps the state of Kimp that corresponds to an
early return of miss (line 5 in in Algorithm 2) to the last state
in Ksp that ends with Output = miss (line 8 in Algorithm 1).
Since the attacker is insensitive to the number of computation
steps, it is unable to infer any additional information in Kimp.

However, under time-sensitive (strong) equivalence (i.e.,
eq ≡ eqs in ϕsp), the tool is unable to synthesize a valid
refinement mapping. Intuitively, this is because for each trace
that ends on line 5 in Algorithm 2, it is impossible to find
another observationally equivalent trace that takes the same
amount of time but differs on the satisfaction of Prow . Thus,
the concrete program Kimp cannot be considered a secure
implementation if the attacker is capable of observing the
length of program executions.

Analysis of results: Table I shows the results from
synthesis runs for varying sizes of the game grid. While
genqbf can generate the QBF formulas quickly, QuAbs takes
longer to return an answer. This difference is due to the
nondeterministic nature of the program: Since the opponent
can guess any possible position on the board in each round,
the input (i, j) is nondeterministic. Also, Ksp and Kimp are
loop-free programs constructed using only if-else statements,
implying that the depth of the model is constant for any grid
size. In our implementation, the coordinates i, j are in bit-
wise representation (i.e., for a grid of size = 402, we need at
least 6 bits + 6 bits for both i and j). Thus, even when we
increase the grid size drastically, the size of AP in the model
do not increase in the same magnitude, and the time it takes
to generate and solve the QBF queries also remains relatively
small. However, we need to check through all the possible
values of the input to ensure secrecy property, when the grid
size increases, more enumeration needs to be done by the QBF
solver QuAbs, affecting the solving time.

B. Case Study 2: Password Checker

Our second case study is a password checker program
that compares an input from a client against a password
stored on a web server. Modern web applications rely on
the strength of passwords to ensure security; for example,
a user may be required to create a password that contains
some minimum combination of digits, symbols, and uppercase
letters. Although these constraints can make it difficult for an
attacker to guess the correct password efficiently, there are
other ways in which this secrete could be leaked—also called

HyperQube
grid size |S| genQBF [s] QuAbS [s] Total [s]

32 13*9 1.07 0.23 1.30
102 13*100 1.03 0.58 1.61
202 13*400 1.25 2.25 3.50
402 13*1600 1.54 12.73 24.62
602 13*3600 1.79 16.81 28.82
802 13*6400 3.36 116.25 130.51
1002 13*10000 4.51 165.82 177.57

TABLE I: Synthesis times for the battleship game problem.
BMC with bound k = 7 terminates for all grid sizes.

side-channel attacks. In particular, the secrecy of interest in
this case study is the size of a server-side stored password:
If the password checker leaks information about the size, the
attacker may be able to leverage this information and increase
its chance of successfully guessing the correct password.

Algorithm 3: Password checker spec (Ksp)
Input: int[] input
Output: {true, false}

1 boolean matches = true;
2 for i ∈ {0, . . . , input .length} do
3 if input [i] 6= password [i] then
4 matches ← false
5 end
6 end
7 return matches

Algorithm 4: Password Checker Impl (Kimp)
Input: int[] input
Output: {true, false}

1 if (input .length 6= password .length) then
2 return false
3 end
4 for i ∈ {0, . . . , input .length} do
5 if input [i] 6= password [i] then
6 return false
7 end
8 end
9 return true

The basic functionality of a password checker is to return
“yes” when the user’s input matches the secret password and
“no” otherwise. We investigate two programs, the specification
Ksp and and implementation Kimp . Consider Ksp in Algo-
rithm 3. It initializes a Boolean value matches as true and
iterates through every character of the user input. If there is any
mismatch between the input and the password, matches is set
to false. Algorithm 4 shows a candidate implementation, Kimp .
In the beginning of the program (lines 1-2), it first compares
the lengths of the input and the password, and returns false
immediately if the lengths do not match. This appears to be
a reasonable implementation, as if the input differs from the
password in length, the two cannot possibly match.

We define a trace property Psize , which represents the
secret to be preserved (i.e., the size of password). We first
introduce a helper function size(), which returns the length of
a given object. Then, Psize states that the size of user input is



HyperQube
length of secret |S| genQBF [s] QuAbS [s] Total [s]

3 49× 32 8.06 3.52 11.58
5 49× 52 13.78 4.61 18.39
7 49× 72 19.45 5.36 24.81

10 49× 102 33.91 9.82 43.73
13 49× 132 49.23 8.41 57.64
15 49× 152 60.19 10.19 70.38
17 49× 172 79.83 12.51 92.34
20 49× 202 111.35 15.86 127.21

TABLE II: Synthesis times for the password checking problem.
BMC with k = 24.

equal to the size of the stored password:

Psize ≡
(
input .size() = pass.size()

)
π

Hence, Psize is true if and only if on this trace, the length of
input and pass are equal.

The secrecy-preserving property w.r.t. Psize is defined as:

ϕsp ≡ ∀π.∃π′.Psize(Rm(π))→ (eq(π, π′) ∧ ¬Psize(π′))

In addition, we assume that the attacker can only observe the
final output of the programs (i.e., APobs = {Output}).

Synthesized refinement mapping: Under time-
insensitive equivalence (eq ≡ eqw), our tool was able
to find a secrecy-preserving refinement mapping for the
implementation Kimp of password checker program. The
synthesized mapping achieves the simulation condition, by
mapping the state of Kimp that corresponds to the early
false return (line 2 in Algorithm 4) to the state of Ksp that
returns with matches = false. Furthermore, if we disregard
the number of computational steps, Kimp does not leak
any more information than Ksp (including the size of the
password) and thus, preserves the secrecy after refinement.

However, under time-sensitive equivalence (eqs), the tool
is unable to find a valid refinement mapping. Intuitively, this
is because the length of a trace in Kimp varies depending on
whether the user input matches the password in length, while
this is not the case in Ksp , resulting in leakage of secret Psize.

Analysis of results: The synthesis times (for varying
lengths of password) are shown in Table II. A contrary trend
can be seen here in comparison to the battleship game. Note
that genqbf takes more time but QuAbs finds a solution rela-
tively quickly. This is because the password checker programs
contain loops and a larger transition system; as a result, the
time taken by genqbf grows fast when we increase the possible
length of user input and password. On the other hand, in our
setting, the only source of non-determinism is in the size of
the user input, not its content (e.g., the attacker may provide a
series of strings containing only ’0’ characters, with the goal
of determining the size of the password). Thus, the number
of inputs for the QuAbs solver to explore remain relatively
small even with the varying sizes of the password—hence, the
relatively slow growth in the solving time.

VII. RELATED WORK

The closest work to the study in this paper is the work
in [38], where the authors study the problem of mapping

synthesis for trace properties. We generalize [38] to hyper-
properties that capture complex information-flow requirements,
and we also provide a reduction to HyperLTL model checking.
Also, the work in [38] focuses on asynchronous event-based
systems, while in this paper we present a synchronous state-
based version of mapping synthesis which we believe is more
elegant.

Another related line of work is efforts on program synthesis
for hyperproperties. The program repair problem for HyperLTL
has been studied in [10]. The repair problem is to find a subset
of traces of a Kripke structure that satisfies a given HyperLTL
formula. The authors in [10] study the complexity of program
for different fragments of HyperLTL. The repair problem is
similar to the controller synthesis problem studied in [11].
In both problems, the goal is to prune the set of transitions
of the given plant or model. However, in program repair, all
transitions are controllable, whereas in controller synthesis
the pruning cannot be applied to uncontrollable transitions.
The complexity of the controller synthesis problem for Hy-
perLTL was studied in [11]. Directly related to the controller
synthesis problem studied in this paper is the satisfiability.
The satisfiability problem for HyperLTL was shown to be
decidable for the ∃∗∀∗ fragment and for any fragment that
includes a ∀∃ quantifier alternation [19]. The hierarchy of
hyperlogics beyond HyperLTL has been studied in [17]. The
general synthesis problem differs from controller synthesis in
that the solutions are not limited to the state graph of the
plant. For HyperLTL, synthesis was shown to be undecidable
in general, and decidable for the ∃∗ and ∃∗∀ fragments [21].
While the synthesis problem becomes, in general, undecidable
as soon as there are two universal quantifiers, there is a special
class of universal specifications, called the linear ∀∗-fragment,
which is still decidable. The linear ∀∗-fragment corresponds to
the decidable distributed synthesis problems [28]. The bounded
synthesis problem [21], [18] considers only systems up to a
given bound on the number of states. Bounded synthesis has
been successfully applied to various benchmarks including the
dining cryptographers [14].

There has been a lot of recent progress in automatically
verifying [27], [26], [25], [18] and monitoring [2], [24], [13],
[12], [23], [45], [32] HyperLTL specifications. HyperLTL is also
supported by a growing set of tools, including the model
checker MCHyper [27], [18], the bounded model checker
HyperQube [35], the satisfiability checkers EAHyper [22]
and MGHyper [20], and the runtime monitoring tool RVHy-
per [23]. The problem of model checking hyperproperties for
tree-shaped and acyclic graphs was studied in [9].

Refinement for information-flow properties such as non-
interference has been investigated extensively in the litera-
ture [4], [7], [6], [33], [36], [39], [29], [41], [42], [43]. These
works typically prescribe manual or semi-automated methods
(based on proof assistants such as Coq [8]) for verifying
refinement. In comparison, by formulating refinement as a
synthesis problem, our ultimate goal is to provide automated
support for security refinement. Our approach is also intended
to be general: Although our case studies focused on the notion
of secrecy from [4], our technique can be used to synthesize
a mapping for any property that is expressible in HyperLTL.



VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an approach for auto-
matically synthesizing a mapping between two models that
satisfies hyperproperties, and demonstrated its utility on a
variety of problems, including mapping high-level designs to
low-level execution platforms, enforcing properties such as
non-interference, and secrecy-preserving refinement mappings.
We showed how the mapping synthesis problem can be solved
by reducing it to bounded model checking for the logic
HyperLTL. We also reported on a prototype implementation
and demonstrated two case studies.

Currently, our technique is used to synthesize a refinement
mapping to one particular given implementation. A promising
future direction is to build a platform model that encodes
a set of possible implementations (e.g., by adopting the no-
tion of holes in program sketching [44]) and leverage our
technique to synthesize an implementation that preserves a
desired security property. We also plan to extend our synthesis
technique for properties that are beyond the expressiveness
of HyperLTL, such as hyperproperties that involve stuttering
equivalence [31].
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