
Multi-Agent Path Planning with Hyperproperties
Anonymous Author(s)

ABSTRACT
In this paper, we introduce a logic-based discrete path planning
technique for multi-agent robotic systems. The novelty of our ap-
proach stems from the theory of hyperproperties. A hyperproperty
is a set of sets of execution traces, expressing the property of a set
of executions, rather then traditional trace-based languages that de-
scribe properties of individual executions. The inherent multi-trace
nature of hyperproperties makes them a highly desirable frame-
work to specify objectives and intended behaviors of controllable
robots and uncontrollable adversaries in multi-agent systems. We
specify several path planning problems in the temporal logic Hy-
perLTL— a generalization of the Linear Temporal Logic (LTL) that
allows for simultaneous and explicit quantification over execution
traces. We show that HyperLTL can capture many important path
planning requirements such as optimization, privacy, priority, and
adversarial control policies. We reduce the path planning problem
to the HyperLTL verification problem for bounded executions and
utilize a solution based on solving the satisfiability problem for
quantified Boolean formulas (QBF). Our experiments show the ap-
plicability of our method in terms of generality and the diversity of
path planning problems as well as efficiency and effectiveness of
our approach.

KEYWORDS
Formal methods for CPS, Hyperproperties, Multi-robot planning,
Robotics, Temporal Logic
ACM Reference Format:
Anonymous Author(s). 2020. Multi-Agent Path Planning with Hyperprop-
erties. In Proceedings of Woodstock ’18: ACM Symposium on Neural Gaze
Detection (ICCPS ’21). ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Formal methods are a class of automated and rigorous techniques
that have important applications in the design and implementa-
tion of cyber-physical systems (CPS). These systems often carry
out complex tasks, such as functions of robots and autonomous
vehicles. Specifically, the complex tasks of a system are formally
expressed in some form of temporal logic (e.g., the linear temporal
logic (LTL) [22] or signal temporal logic (STL) [18]), which provide
a set of well-defined syntactic and semantic rules. Based on this,
automatic correct-by-construction algorithms can be designed to
compute control policies for general tasks expressed by temporal

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCPS ’21, June 03–05, 2018, Woodstock, NY
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

logics — traditionally by model-based synthesis techniques [3] and
more recently using model-free learning [5, 11? , 12].

An increasing number of CPS are built in a multi-agent or dis-
tributed fashion [10, 15, 26, 30]. In these systems, multiple agents
implement local control policies with partial or complete informa-
tion on the whole system, in order to collaboratively carry out a
global task. Historically, most global tasks that have been studied
are relatively simple, such as consensus [23] and formation [19].

Recently, there is a growing interest in using formal methods
to design control policies for complex logical tasks of multi-agent
CPS. To formally capture these tasks by temporal logics, common
temporal logics, such as LTL and STL, meet a stumbling block: they
can only express tasks for a single execution of a single agent.
Therefore, to use them for multi-agent CPS, in the most ideal case,
one has to explicitly decompose the global task into several rela-
tively independent local tasks, and use LTL or STL to capture each
local task [15, 17, 21]. For tasks that cannot be decomposed into
local tasks, counting LTL (cLTL) [16, 24, 25] and TeamLTL [27] are
proposed to augment the syntactic and semantic rules of common
temporal logic to reason about global tasks that simultaneously
involve the executions frommultiple agents. However, all the above
works do not support important global tasks that involve explicit
quantification to individual trajectories. For example, they cannot
specify a global task such as “for any execution of agent 𝐴, there
exists a control policy for Agent 𝐵 to fulfill a joint temporal logic
task with Agent 𝐴”.

To capture global task requirements in multi-agent applications,
and following a recent study in [28], we propose a general and
novel technique based on hyperproperties [7] as our tool to specify
objectives of path planning. Technically speaking, a hyperproperty
is a set of sets of execution traces that specify a system-wide prop-
erty, rather than the property of individual traces. The theory of
hyperproperties was first introduced as a framework to deal with
information-flow security policies that need to reason about mul-
tiple executions simultaneously [?]. Since then, temporal logics
HyperLTL [6] and HyperPCTL [1, 2] have been introduced to provide
clear formal syntax and semantics to different classes of hyper-
properties. Besides information-flow control, hyperproperties have
been a powerful tool to express and reason about consistency in
concurrent data structures [4] as well as sensitivity and robustness
in CPS [29].

In this paper, we employ HyperLTL as an elegant and expressive
tool to seamlessly express a rich set of requirements of global and lo-
cal objectives in multi-agent robotic applications and subsequently
solve the corresponding path planning problems for a given sys-
tem. HyperLTL extends LTL by allowing explicit and simultaneous
quantification over a set of execution paths that have some rela-
tion with each other. For example, consider the problem of finding
the shortest path in a single-agent setting. The objective can be
expressed as the HyperLTL formula:

∃𝜋.∀𝜏 .(¬goal𝜏 U goal𝜋) .

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

The formula essentially captures that path 𝜋 (i.e., the shortest path)
reaches the goal before any other path 𝜏 .

In the multi-agent setting, we focus on two classes of path plan-
ning problems in (1) adversarial, and (2) non-adversarial applications.
In the non-adversarial scenarios, the agents fulfill the assigned tasks
with no interference from other agents. For example, in the squad
shift problem, a squad of 𝑛 robots need to take turns to constantly
occupy a location (in an arbitrary order). The HyperLTL formulas
for non-adversarial problems are usually of the form:

∃𝜋1 .∃𝜋2 · · · ∃𝜋𝑛 .𝜓,
where path variables 𝜋1, . . . , 𝜋𝑛 are instantiated to satisfy the ob-
jective𝜓 .

On the other hand, in the adversarial setting, a set of controllable
agents should plan their paths knowing that another set of uncon-
trollable agents may unintentionally or maliciously interfere with
their control actions. For example, an adversarial robot can act as a
moving obstacle, attempting to block the paths of the controllable
robots to achieve their goal. The HyperLTL formula for adversarial
problems are normally of the form:

∀𝜋 ′
1 .∀𝜋

′
2 · · · ∀𝜋

′
𝑚 .∃𝜋1 .∃𝜋2 · · · ∃𝜋𝑛 .𝜓,

where path variables 𝜋1 · · · 𝜋𝑛 are instantiated to satisfy the objec-
tive𝜓 in the presence of any adversarial paths 𝜋 ′

1 · · · 𝜋
′
𝑚 .

The path planning algorithm introduced in this work takes as
input (1) aHyperLTL formula𝜑 that specifies the global control objec-
tives of the agents, and (2) a discrete-time transition system (DTS)
𝐷 that models the agents’ operation. The algorithm synthesizes as
output a set of paths as the witness to the existential quantifiers
that satisfy𝜑 . Specifically, our synthesis algorithmworks as follows.
First, we adopt the bounded terminating semantics for HyperLTL
proposed in [14]. It allows us to reason about terminating systems
such as path planning. The bounded terminating semantics also
allow us to reduce our synthesis problem to the satisfiability prob-
lem for quantified Boolean formulas (QBF). In other words, the QBF
encoding ⟦𝐷,𝜑⟧ is satisfiable if and only if the answer to the path
planning problem is affirmative.

We have fully implemented the introduced technique and con-
ducted a rich set of experiments. Our non-adversarial path planning
problems include squad shift (i.e., constant occupation of a critical
region by at least one robot at each time instant), priority (i.e., some
robot has priority over another to be in a region), as well as ro-
bustness (i.e., independence from the start region) and opacity (i.e.,
privacy-preserving exploration) from [28]. In the adversarial set-
ting, we showed applicability our method on fairness (i.e., a robot is
not discriminated by another), moving obstacle (i.e., a robot actively
attempts to block another to reach its goal), and the pursuer-evader
game from [8], where the pursuer’s goal is to catch the evader in
a sensor network. Our experiments show the effectiveness of our
approach as well as its efficiency in spite of its generality.

Organization. In Section 2, we introduce the preliminary con-
cepts. The formal statement of the path planning problem and the
corresponding synthesis algorithm is introduced in Section 3. We
discuss the set of path planning problems in Section 4, and evaluate
our experimental results for these problems in Section 5. Related
work is discussed in Section 6. Finally, we make concluding remarks
and discuss avenues for future work in Section 7.

u

u

u

u

u

u

u
r r r r r

d

d
r r

Figure 1: Shortest Path in a 10 × 10 grid.

2 PRELIMINARIES
2.1 Discrete Transition Systems
Wemodel the systemwhere the robots operate as discrete transition
systems. Let AP be a finite set of atomic propositions and Σ = 2AP
be the alphabet. A letter is an element of Σ. A trace 𝑡 ∈ Σ𝜔 over
alphabet Σ is an infinite sequence of letters: 𝑡 = 𝑡 (0)𝑡 (1)𝑡 (2) · · · .

Definition 2.1. A discrete transition system (DTS) is a tuple
𝐷 = ⟨𝑆, 𝑆init,Act, 𝛿,AP, 𝐿⟩, where

• 𝑆 is a finite set of states;
• 𝑆init ⊆ 𝑆 is the set of initial states;
• Act is a finite set of actions;
• 𝛿 ⊆ 𝑆 × Act × 𝑆 is a transition relation;
• AP is the set of atomic propositions, and
• 𝐿 : 𝑆 → Σ is a labeling function on the states of 𝐷 .

We require that for each 𝑠 ∈ 𝑆 , there exists 𝑠 ′ ∈ 𝑆 , such that
(𝑠, 𝑎, 𝑠 ′) ∈ 𝛿 , for some 𝑎 ∈ Act. We also assume that 𝛿 is determin-
istic with respect to the choice of actions.

For example, the 10 × 10 grid shown in Figure 1 can be modeled
by a DTS with 100 states, where the red and green cells are the
initial and goal states, respectively. A robot can change state by a
set of actions Act = {𝑟, 𝑙, 𝑢, 𝑑} denoting right, left, up, and down
moves on the grid. The black cells are obstacles, preventing a robot
to reach them. Thus, the actions in Act are not enabled in all states.

Let us denote a transition (𝑠, 𝑎, 𝑠 ′) by 𝑠
𝑎−→ 𝑠 ′. A loop in 𝐷 is a

finite sequence 𝑠 (0)𝑠 (1) · · · 𝑠 (𝑛), such that 𝑠 (𝑖) 𝑎𝑖−−→ 𝑠 (𝑖 + 1) ∈ 𝛿 , for
all 0 ≤ 𝑖 < 𝑛, and 𝑠 (𝑛) 𝑎𝑛−−→ 𝑠 (0) ∈ 𝛿 . We call a DTS acyclic, if
the only loops are self-loops on otherwise terminal states, i.e., on
states that have no other outgoing transition. In this paper, we only
consider acyclic DTS, where terminal states are labeled by a special
atomic proposition halt.

A path of a DTS is an infinite sequence of states of the form:

𝑠 (0) 𝑎0−−→ 𝑠 (1) 𝑎1−−→ · · · ,

such that 𝑠 (0) ∈ 𝑆init, and 𝑠 (𝑖)
𝑎𝑖−−→ 𝑠 (𝑖 + 1) ∈ 𝛿 , for all 𝑖 ≥ 0. A trace

of a DTS is a trace 𝑡 (0)𝑡 (1)𝑡 (2) · · · ∈ Σ𝜔 , such that there exists a
path 𝑠 (0) 𝑎0−−→ 𝑠 (1) 𝑎1−−→ · · · with 𝑡 (𝑖) = 𝐿(𝑠 (𝑖)), for all 𝑖 ≥ 0. We
denote by Traces(𝐷) the set of all traces of DTS 𝐷 . For example, the
blue arrows in Figure 1 illustrate a path in the DTS that starts from
the initial state and consists of seven up actions, followed by five

2

right, two down, and another two right actions, and finally reaches
the goal state.

2.2 The Temporal Logic HyperLTL
HyperLTL [6] is an extension of the linear-time temporal logic (LTL)
for hyperproperties. In this paper, since our path planning problem
is for finite and terminating paths, we utilize the bounded terminat-
ing semantics introduced in [14] to deal with terminating protocols.

2.2.1 Syntax. The syntax of HyperLTL formulas is defined induc-
tively by the following grammar:

𝜑 ::= ∃𝜋.𝜑 | ∀𝜋.𝜑 | 𝜙
𝜙 ::= true | 𝑝𝜋 | ¬𝜙 | 𝜙 ∨ 𝜙 | 𝜙 ∧ 𝜙 | 𝜙 U 𝜙 | 𝜙 R 𝜙 | 𝜙

where 𝑝 ∈ AP is an atomic proposition and 𝜋 is a trace variable from
an infinite supply of variables V . The Boolean connectives ¬, ∨,
and ∧ have the usual meaning,U is the temporal until operator, R
is the temporal release operator, and is the temporal next operator.
We also consider other derived Boolean connectives, such as→, and
↔, and the derived temporal operators eventually 𝜑 ≡ true U 𝜑

and globally 𝜑 ≡ ¬ ¬𝜑 . The quantified formulas ∃𝜋 and ∀𝜋 are
read as “along some trace 𝜋” and “along all traces 𝜋”, respectively.

A formula is closed (i.e., a sentence) if all trace variables used in
the formula are quantified. We assumed, without lost of generality
that no variable is quantified twice. We use Vars(𝜑) for the set of
trace variables used in formula 𝜑 .

2.2.2 Semantics.

Interpretation. An interpretation T = ⟨𝑇𝜋 ⟩𝜋 ∈Vars(𝜑) of a formula
𝜑 consists of a set of traces, one set 𝑇𝜋 per trace variable 𝜋 in
Vars(𝜑). We use𝑇𝜋 for the set of traces assigned to 𝜋 . The idea here
is to allow quantifiers to range over different systems. We use this
feature to handle path planning for robots that have related but
different controllable constrains or plants (e.g., adversarial robots
and in particular, our pursuer-evader example). Another reason is
that we may need different agents to be able to adopt independent
control policies.

With this feature, each set of traces comes from its own DTS and
we use D = ⟨𝐷𝜋 ⟩𝜋 ∈Vars(𝜑) to denote a family of discrete transition
systems. Thus, 𝑇𝜋 = Traces(𝐷𝜋) is one set of traces that 𝜋 can
range over, which comes from 𝐷𝜋 . Abusing notation, we write
T = Traces(D). Note that all trace sets being the same set of traces
for a single DTS 𝐷 is a particular case that all robots have the
same controllable constraints (i.e. robust path synthesis), which
leads to the original HyperLTL. The multi-model nature of our
interpretation allows us to incorporate heterogeneous robots that
can potentially operate in different plants.

Terminating Semantics. To adapt to robotic path planning with
given time horizons, we use a terminating semantics for HyperLTL.
This semantics is the halting pessimistic introduced in [14] for gener-
ating bounded model checking queries to verify HyperLTL formulas.
The semantics are defined with respect to a trace assignment, which
is a partial map Π : Vars(𝜑) ⇀ Σ𝜔 . The assignment with an empty
domain is denoted by Π∅ . In the sequel, let us denote the set of
integers {1, 2, . . . , 𝑛} with interval [1, 𝑛]. We assume the HyperLTL

formula is closed and of the form:

Q1𝜋1 .Q2𝜋2 . . .Q𝑛𝜋𝑛 .𝜓

where eachQ𝑖 ∈ {∀, ∃}, for 𝑖 ∈ [1, 𝑛], and it has been converted into
negation-normal form (NNF) so that the negation symbol only ap-
pears in front of atomic propositions, e.g., ¬𝑝𝜋1 . Let T = ⟨𝑇1 . . .𝑇𝑛⟩
be a tuple of finite sets of finite traces, one per trace variable. Given a
trace assignment Π, a trace variable 𝜋 , and a concrete trace 𝑡 ∈ Σ𝜔 ,
we denote by Π[𝜋 → 𝑡] the assignment that coincides with Π
everywhere but at 𝜋 , which is mapped to trace 𝑡 .

We start by defining a satisfaction relation between HyperLTL
formulas within a finite discrete time horizon h (i.e., the number of
steps in a trace which is obviously bounded by the longest path in
a DTS), and models (T ,Π, 𝑖), where T is the tuple of set of traces,
Π is a trace assignment mapping, and 𝑖 ∈ Z≥0 that points to each
position of traces. The satisfaction of a HyperLTL formula 𝜑 is a
binary relation |=ℎ that associates a formula to the models (T ,Π, 𝑖)
where 𝑖 ∈ Z≥0 is a pointer that indicates the current position of all
traces in T .

We define the terminating semantics separately in quantifiers,
Boolean operators, and temporal operators, as follows:
Quantifiers. The satisfaction relation for the quantifiers is:

(T ,Π, 0) |=ℎ ∃𝜋. 𝜓 iff there is a 𝑡 ∈ 𝑇𝜋
such that (T ,Π[𝜋 → 𝑡], 0) |=ℎ 𝜓

(T ,Π, 0) |=ℎ ∀𝜋. 𝜓 iff for all 𝑡 ∈ 𝑇𝜋
such that (T ,Π[𝜋 → 𝑡], 0) |=ℎ 𝜓

Boolean operators. For every 𝑖 ≤ ℎ, we have that:

(T ,Π, 𝑖) |=ℎ true
(T ,Π, 𝑖) |=ℎ 𝑝𝜋 iff 𝑝 ∈ Π(𝜋) (𝑖)
(T ,Π, 𝑖) |=ℎ ¬𝑝𝜋 iff 𝑝 ∉ Π(𝜋) (𝑖)
(T ,Π, 𝑖) |=ℎ 𝜓1 ∨𝜓2 iff (T ,Π, 𝑖) |=ℎ 𝜓1 or (T ,Π, 𝑖) |=ℎ 𝜓2
(T ,Π, 𝑖) |=ℎ 𝜓1 ∧𝜓2 iff (T ,Π, 𝑖) |=ℎ 𝜓1 and (T ,Π, 𝑖) |=ℎ 𝜓2

Temporal connectives. If (𝑖 < ℎ), we follow the normal temporal
operator in HyperLTL semantics:

(T ,Π, 𝑖) |=ℎ 𝜓 iff (T ,Π, 𝑖 + 1) |=ℎ 𝜓

(T ,Π, 𝑖) |=ℎ 𝜓1 U 𝜓2 iff (T ,Π, 𝑖) |=ℎ 𝜓2, or
(T ,Π, 𝑖) |=ℎ 𝜓1 and
(T ,Π, 𝑖 + 1) |=ℎ 𝜓1 U 𝜓2

(T ,Π, 𝑖) |=ℎ 𝜓1 R 𝜓2 iff (T ,Π, 𝑖) |=ℎ 𝜓2, and
(T ,Π, 𝑖) |=ℎ 𝜓1 or
(T ,Π, 𝑖 + 1) |=ℎ 𝜓1 R 𝜓2

For (𝑖 = ℎ), we define the following for deciding eventualities.
To capture the terminating semantics, we use the predicate halt
that is true if the state that corresponds to a terminating state (self-
loop), and define Halt def

=
∧

𝜋Vars(𝜑) halt𝜋 which holds whenever
all traces have terminated (and their final state will be repeated ad
infinitum). Thus, we have:

(T ,Π, 𝑖) |=ℎ 𝜓 iff (T ,Π, 𝑖) |=ℎ Halt and
(T ,Π, 𝑖) |=ℎ 𝜓,

(T ,Π, 𝑖) |=ℎ 𝜓1 U 𝜓2 iff (T ,Π, 𝑖) |=ℎ 𝜓2
(T ,Π, 𝑖) |=ℎ 𝜓1 R 𝜓2 iff (T ,Π, 𝑖) |=ℎ 𝜓1 ∧𝜓2, or

(T ,Π, 𝑖) |=ℎ Halt and (T ,Π, 𝑖) |=ℎ 𝜓2

3

We say that an interpretation T satisfies a specification 𝜑 , de-
noted by T |=ℎ 𝜑 , if (T ,Π∅, 0) |=ℎ 𝜑 . We say that a family of DTSs
D satisfies a specification 𝜑 , denoted by D |=ℎ 𝜑 , if it holds that
⟨Traces(𝐷𝜋)⟩𝜋 ∈Vars(𝜑) |=ℎ 𝜑 .

For example, the shortest path as shown in Figure 1 is a planning
objective for one agent which can be expressed in HyperLTL as:

𝜑sp = ∃𝜋.∀𝜏 .(¬goal𝜏 U goal𝜋) .

That is, all paths 𝜏 reach the goal at or after the point that the
shortest path 𝜋 reaches the goal. It is straightforward to see that
in the DTS in Figure 1, the path denoted by the blue arrows is
the shortest path from the initial state to the goal and, hence, a
satisfying witness to 𝜋 . Our goal in this paper is to reduce the path
planning problem to the HyperLTL verification problem, where the
witness to existential trace quantifiers establish paths for different
agents that satisfy a common objective.

3 PROBLEM STATEMENTS AND QBF-BASED
SOLUTION

We now formally state the path planning problem through a reduc-
tion to the HyperLTL verification problem.

3.1 Formal Statement of the Problem
We start with the following definitions.

Definition 3.1. Let 𝐷 = ⟨𝑆, 𝑆init,Act, 𝛿,AP, 𝐿⟩ be a DTS. We say
that𝐴 = 𝑎0𝑎1 · · · is a valid sequence of actions if there exists a path
𝑠0

𝑎0−−→ 𝑠1
𝑎1−−→ 𝑠2 · · · in 𝐷 .

Definition 3.2. Let 𝐷 = ⟨𝑆, 𝑆init,Act, 𝛿,AP, 𝐿⟩ be a DTS. A control
policy is a function 𝑐 : 2Act

∗ → 2Act
∗
that maps a set of valid finite

sequences of actions to another set of valid sequences of actions.

The intuition behind Definition 3.2 is that a control policy maps
a finite set of actions (typically by adversaries) to another finite
set of sequences of actions (typically by controllable agents) that
collectively satisfy a global objective.

We assume𝑛 controllable agents and𝑚 uncontrollable adversaries.
LetD be a family of DTSs and𝜓 (𝜋1 · · · 𝜋𝑛, 𝜋 ′

1 · · · 𝜋
′
𝑚) be a HyperLTL

formula describing the objective constraints over the behavior of
the agents and adversaries, where 𝜋1 · · · 𝜋𝑛 and 𝜋 ′

1 · · · 𝜋
′
𝑚 are free

trace variables in𝜓 . Clearly, in a non-adversarial setting, the paths
𝜋 ′

1 · · · 𝜋
′
𝑚 are omitted. For instance, in the aforementioned shortest

path example we have:

𝜓sp = ∀𝜏 .(¬goal𝜏 U goal𝜋),

where 𝜋 is the free trace variable (to be computed during path plan-
ning).

Intuitively, the path planning problem is to find a control func-
tion 𝑐 that maps any set of sequences of actions of adversaries
to some set of sequences of actions of the agents that satisfy a
global control objective𝜓 . This problem is analogous to solving the
following HyperLTL verification problem.

Given a family of DTS D, 𝑚 adversaries, 𝑛 agents, and a
global control objective formula𝜓 , does there exist a control
policy such that:

D |= ∀𝜋 ′
1 .∀𝜋

′
2 · · · ∀𝜋

′
𝑚︸ ︷︷ ︸

adversaries

. ∃𝜋1 .∃𝜋2 · · · ∃𝜋𝑛︸ ︷︷ ︸
agents

. 𝜓︸︷︷︸
objective

;

here, each 𝜋 ′
𝑖
is the valid path for a sequence of actions

𝑎′𝑖0 𝑎
′𝑖
1 𝑎

′𝑖
2 · · · of adversary 𝑖 ∈ [1,𝑚], and each 𝜋 𝑗 is the valid

path for a sequence of actions 𝑎 𝑗0𝑎
𝑗

1𝑎
𝑗

2 · · · of agent 𝑗 ∈ [1, 𝑛].

For example, for the shortest path objective with no adversaries,
the path planning problem is mapped into solving the verification
problem with respect to the formula:

𝜑sp = ∃𝜋.∀𝜏 .(¬goal𝜏 U goal𝜋)︸ ︷︷ ︸
𝜓sp

.

In this case, 𝜋 provides us with the sequence of actions that a
robot should take to follow the shortest path. Clearly, when there
is no adversary, paths 𝜋1, 𝜋2, . . . , 𝜋𝑛 are computed such that they
satisfy𝜓 .

3.2 Reduction to the QBF Satisfiability Problem
We solve the multi-agent planning problem using a reduction to
the quantified Boolean satisfiability (QBF) [9] checking problem.
That is, given a family of DTS D, a HyperLTL planning objective 𝜑 ,
and a time horizon ℎ, we construct a QBF formula ⟦D, 𝜑⟧ℎ that is
satisfiable if and only the answer to the path planning problem is
affirmative. The QBF satisfiability problem is the following:

Given is a set of Boolean variables,𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛},
and a formula 𝐹 = Q1𝑥1 .Q2𝑥2 . . .Q𝑛−1𝑥𝑛−1 .Q𝑛𝑥𝑛 .𝜓 ,
where each Q𝑖 ∈ {∀, ∃} (𝑖 ∈ [1, 𝑛]) and 𝜓 is an arbi-
trary Boolean formula over variables 𝑋 . Is 𝐹 true?

Figure 2 shows a satisfying model for the given QBF.

T

T

T

TT

T

T

F

F

F

F F

T T T

x3

x2

x3

x5 x5

x4x4

x1

Figure 2: Model for the QBF formula 𝐹 = ∃𝑥1 .∀𝑥2 .∃𝑥3 .∃𝑥4 .∀𝑥5 .
(𝑥1∨¬𝑥2∨𝑥3) ∧ (¬𝑥1∨𝑥2∨¬𝑥4) ∧(¬𝑥3∨𝑥4∨¬𝑥5) ∧ (𝑥1∨𝑥4∨𝑥5)

Our approach is an adaptation of the HyperLTL bounded model
checking algorithm proposed in [14]. More specifically, let 𝜑 be
a HyperLTL formula of the form 𝜑 = Q1𝜋1 .Q2𝜋2Q𝑛𝜋𝑛 .𝜓 and
D = ⟨𝐷1, 𝐷2, . . . , 𝐷𝑛⟩. The encoding of the HyperLTL verification

4

problem in QBF is the following:

⟦D, 𝜑⟧ℎ = Q1𝑑1 .Q2𝑑2 · · · .Q𝑛𝑑𝑛
(
⟦𝐷1⟧ℎ ◦1 ⟦𝐷2⟧ℎ ◦2 · · ·

⟦𝐷𝑛⟧ℎ ◦𝑛 ⟦𝜓⟧ℎ
)
,

where ⟦𝜓⟧ℎ is the encoding of the inner LTL formula 𝜓 , ⟦𝐷 𝑗⟧ is
the encoding of DTS 𝐷 𝑗 , ◦𝑗 = ∧ if Q𝑗 = ∃ and ◦𝑗 =→ if Q𝑗 = ∀,
for 𝑗 ∈ [1, 𝑛]. The encodings of ⟦𝐷 𝑗⟧ℎ and ⟦𝜓⟧ as propositional
formulas are identical to that of standard bounded model checking.
Since in this paper, our focus is on finite path planning, time horizon
ℎ is guaranteed to be bounded. In particular, when the unrolling
of 𝐷 𝑗 reaches a state labeled by halt, the unrolling can stop. While
the details of the transformation is outside the scope of this paper,
we explain the construction of ⟦D, 𝜑⟧ℎ using an example.

3.3 Example
3.3.1 Encoding of DTS. Consider the grid in Figure 1 modeled by
a DTS 𝐷 . The size of the set 𝑑 of variables needed for Boolean
representation of 𝐷 is log2 (10) + log2 (10) + 2, to encode 𝑥 and 𝑦
coordinates and two propositions goal and halt. Thus, the initial
state 𝑠0 with coordinate (0, 0) is encoded as:

𝐼 (𝑠0) :=(¬𝑥3 ∧ ¬𝑥2 ∧ ¬𝑥1 ∧ ¬𝑥0) ∧ (1)
(¬𝑦3 ∧ ¬𝑦2 ∧ ¬𝑦1 ∧ ¬𝑦0) ∧ ¬goal ∧ ¬halt .

All other states are similarly encoded. The transition relation of the
DTS is denoted by 𝑅(𝑑𝑖 , 𝑑𝑖+1) for each unrolling step 𝑖 ≤ ℎ, where
𝑑𝑖 is a fresh copy of Boolean variables in 𝑑 . Therefore, the transition
relation up to bound ℎ, is the following:

⟦𝐷⟧ℎ := 𝐼 (𝑑0) ∧ 𝑅(𝑑0, 𝑑1) ∧ 𝑅(𝑑1, 𝑑2) ∧ · · · ∧ 𝑅(𝑑ℎ−1, 𝑑ℎ) .

where 𝐼 is the initial state condition defined in equation (1). Finally,
for each trace variable 𝜋 ∈ Vars(𝜑), we introduce a fresh copy of
{𝑑0, 𝑑1 · · · , 𝑑ℎ}, which we denote by 𝑑𝜋 .

3.3.2 Encoding of Inner LTL Formula. To encode the inner LTL
formula, we use the fixpoint representation of the formula in the
same fashion as bounded model checking. For example, for the
shortest path formula, we have:

⟦¬goal𝜏 U goal𝜋⟧ℎ := goal0𝜋 ∨ (¬goal0𝜏 ∧
(goal1𝜋 ∨ (¬goal1𝜏 ∧
(goal2𝜋 ∨ (¬goal2𝜏 ∧

· · ·

(goalℎ−1
𝜋 ∨ goalℎ𝜋))))))

3.3.3 Complete Formula. Finally, we are ready to construct the
complete QBF query for the DTS, formula 𝜑sp, and time horizon ℎ;
this is achieved as follows:

⟦D, 𝜑sp⟧ℎ := ∃𝑑𝜋 .∀𝑑𝜏 .
(
⟦𝐷𝜋⟧ ∧ (⟦𝐷𝜏⟧ → ⟦¬goal𝜏 U goal𝜋⟧ℎ)

)
.

Now, for the DTS in Figure 1, checking the satisfiability of final
formula ⟦D, 𝜑sp⟧ℎ results in returning the truth assignments to
variables in 𝑑𝜋 as witness of satisfiability. Indeed, this assignment
represents the path of blue arrows as 𝜋 , which is the shortest path.

4 MULTI-AGENT PATH PLANNING
OBJECTIVES IN HYPERLTL

In this section, we present various multi-robot planning problems
whose objectives can be formally expressed by HyperLTL via the
formulation introduced in Section 3. These objectives cannot be
expressed by either cLTL [16] or TeamLTL [27]. We organize this
section by first presenting the non-adversarial cases in Section 4.1
and subsequently the path planning problems in the adversarial
setting in Section 4.2.

4.1 Non-Adversarial Planning
A common class of multi-robot planning problems is to check
whether a (global) objective is achieved for all possible paths of the
robots. Formally, these problems can be expressed by a HyperLTL
formula of the form ∃𝜋1 · · · ∃𝜋𝑛 .𝜓 . The global objective𝜓 itself can
be a HyperLTL formula of the form𝜓 = Q𝜏1 · · ·Q𝜏𝑘 . 𝜑 that contains
quantifications over auxiliary paths 𝜏1 · · · 𝜏𝑘 . As the problem state-
ment in Section 3.1 requires, our goal is to identify an assignment
for path variables 𝜋1, . . . , 𝜋𝑛 to satisfy𝜓 .

4.1.1 Squad Shift. Consider 𝑁 robots working in a shared space
(e.g., for surveillance). Suppose we need the rotation of a squad of
𝑛 robots (𝑛 ≤ 𝑁) to constantly occupy a location crit (e.g., a critical
region) in arbitrary orders. Such a multi-robot planning problem
can be captured by:

𝜑sqs = ∃𝜋1 · · · ∃𝜋𝑛 . 𝜓sqs, (2)

𝜓sqs =

𝑛∧
𝑖=1

(
crit𝜋𝑖 →

𝑛∨
𝑗=1, 𝑗≠𝑖

crit𝜋 𝑗

)
,

where the objective𝜓 is an unquantified HyperLTL and our goal is
to synthesize the paths 𝜋1 · · · 𝜋𝑛 for a squad of 𝑛 robots to achieve
the objective. For simplicity, we omit the task of the other 𝑁 − 𝑛

robots in (2). The subformula𝜓sqs means if robot 𝑖 is currently in
the region crit, then there exists another robot 𝑗 (𝑗 ≠ 𝑖) from the
squad to replace the robot 𝑖 next. Observe that formula (2) cannot
be captured by cLTL [16, 24] when 𝑛 < 𝑁 . This is because although
cLTL can reason about the number of robots in the region crit, it
cannot explicitly specify the behavior of a robot from a squad of
𝑛 robots. This is, of course, possible in HyperLTL, since the logic
allows explicit path quantification.

4.1.2 Priority. Consider 𝑛 robots working in a shared space (e.g.,
in a warehouse). Suppose they need to pass a region B (e.g., a one-
way bridge) with two ends BL and BR . To avoid congestion, if
two robots are to pass B from two opposite directions (i.e. two
robots passing B from BL and BR , respectively) at the same time,
then the robot that arrives first should pass the region B first. This
multi-robot planning problem can be captured by

𝜑pri = ∃𝜋1 · · · ∃𝜋𝑛 . 𝜓pri (3)

𝜓pri =

𝑛∧
𝑖=1

(
B𝜋𝑖 ∧

𝑛∧
𝑗=1,𝑖≠𝑗

(
𝜌 (𝜋𝑖 , 𝜋 𝑗) ∧ 𝜌 (𝜋 𝑗 , 𝜋𝑖)

))
𝜌 (𝜋𝑖 , 𝜋 𝑗) = (BL 𝜋𝑖 ∧ BR 𝜋 𝑗

) → (¬B𝜋 𝑗
U B𝜋𝑖),

5

where the subformula 𝜌 (𝜏𝑖 , 𝜋 𝑗) means if a robot first arrives at
BL /BR (to pass B), then another robot arrives later at the other end
(i.e. BR /BL) should wait until the first-arriving one passes.

4.1.3 Opacity [28]. Consider a team of 𝑛 robots working to ful-
filling a global task 𝜌 (𝜋1, . . . , 𝜋𝑛). Opacity aims at keeping sensitive
information on the paths of the robots secure while fulfilling the
task. In other words, given two sets of paths 𝜋1 · · · 𝜋𝑛 and 𝜏1 · · · 𝜏𝑛 ,
where each set satisfies a global objective 𝜌 and each pair 𝜋𝑖 and
𝜏𝑖 (for all 𝑖 ∈ [1, 𝑛]) that start from different initial states, opacity
requires that each step of the pairs reach equivalent states, as far
as AP is concerned. Formally:

𝜑iso = ∃𝜋1 · · · ∃𝜋𝑛 . 𝜓iso (4)

𝜓iso = ∃𝜏1 · · · ∃𝜏𝑛 .
𝑛∧
𝑖=1

¬(𝜋𝑖 [0] ↔ 𝜏𝑖 [0]) ∧

𝜌 (𝜋1, . . . , 𝜋𝑛) ∧ 𝜌 (𝜏1, . . . , 𝜏𝑛) ∧
𝑛∧
𝑖=1

∧
𝑝∈AP

(𝑝𝜋𝑖 ↔ 𝑝𝜏𝑖)

More specifically, the first conjunct requires that the initial states
of 𝜋𝑖 and 𝜏𝑖 are different, the second and third conjuncts require
𝜋1 · · · 𝜋𝑛 and 𝜏1 · · · 𝜏𝑛 to satisfy 𝜌 , and the last conjunct requires
that each pair 𝜋𝑖 and 𝜏𝑖 reach indistinguishable states. We note that
the last conjunct can technically replace AP with actions in Act (by
abuse of notation) if the objective of opacity is to have equivalent
sequences of actions instead of states. When (4) holds, there are
(at least) two sets of paths from different initial states to achieve
the task 𝜌 , so the exact initial states of the paths 𝜋1, . . . , 𝜋𝑛 to fulfill
𝜌 (𝜋1, . . . , 𝜋𝑛) is opaque. Formula 4 𝜑iso generalizes the notion of
opacity for single robot planning in [28].

Likewise, the opacity of the robots’ paths can be expressed by a
formula where the initial states of pairs of 𝜋𝑖 and 𝜏𝑖 are equivalent,
but they follow different paths:

𝜑po = ∃𝜋1 · · · ∃𝜋𝑛 . 𝜓po (5)

𝜓po = ∃𝜏1 · · · ∃𝜏𝑛 .
𝑛∧
𝑖=1

(𝜋𝑖 [0] ↔ 𝜏𝑖 [0]) ∧

𝜌 (𝜋1, . . . , 𝜋𝑛) ∧ 𝜌 (𝜏1, . . . , 𝜏𝑛) ∧

¬
𝑛∧
𝑖=1

∧
𝑝∈AP

(𝑝𝜋𝑖 ↔ 𝑝𝜏𝑖)

When (5) holds, there are (at least) two sets of paths from the same
initial states to achieve the task 𝜌 , so the exact the paths 𝜋1, . . . , 𝜋𝑛
taken to fulfill 𝜌 (𝜋1, . . . , 𝜋𝑛) is opaque.

4.1.4 Robustness [28]. When controlling a team of robots, the
knowledge of their initial states are subject to bounded (sensing) er-
rors, i.e., the real initial states are in a neighborhood of the known
states. The objective of fulfilling a global task 𝜌 (𝜋1, . . . , 𝜋𝑛) (in-
volving 𝑛 robots) under bounded errors in the initial states can be

expressed in HyperLTL by the following formula:

𝜑rob = ∃𝜋1 · · · ∃𝜋𝑛 .𝜓rob, (6)

𝜓rob = ∀𝜏1 · · · ∀𝜏𝑛 .
𝑛∧
𝑖=1

neighbor𝜋𝑖 ∧ neighbor𝜏𝑖 ∧

𝜌 (𝜋1, . . . , 𝜋𝑛) ∧ 𝜌 (𝜏1, . . . , 𝜏𝑛) ∧
𝑛∧
𝑖=1

∧
𝑝∈AP

(𝑝𝜋𝑖 ↔ 𝑝𝜏𝑖).

where neighbor is a proposition indicating a particular neighbor-
hood. Thus, the first conjunct means that initial states of 𝜋𝑖 and 𝜏𝑖
are located in the same neighborhood. The meaning of the second
and third conjuncts are the same as (4). When (6) holds, the task
𝜌 (𝜋1, . . . , 𝜋𝑛) can be robustly fulfilled under perturbations on the
initial states of 𝜋1, . . . , 𝜋𝑛 . Formula 6 𝜑rob generalizes the notion of
robustness for single robot planning in [28].

4.2 Adversarial Path Planning
More generally than Section 4.1, we consider the planning problem
of𝑛 robots to a (global) objective in the presence of𝑚 uncontrollable
adversarial robots. As mentioned in Section 3.1, these problems can
be expressed by a HyperLTL formula of the form:

∀𝜋 ′
1 · · · ∀𝜋

′
𝑚 . ∃𝜋1 · · · ∃𝜋𝑛 . 𝜓,

where the objective is of the form 𝜓 = Q𝜏1 . . .Q𝜏𝑘 . 𝜑 that con-
tains quantifications over auxiliary paths 𝜏1, . . . , 𝜏𝑘 . Our goal is to
identify a control policy that decides the assignment of the path
variables 𝜋1, . . . , 𝜋𝑛 to satisfy 𝜓 from any possible assignment of
the adversarial path variables 𝜋 ′

1 . . . 𝜋
′
𝑚 .

4.2.1 Moving obstacle. Consider a team of 𝑛 +𝑚 robots, where
𝑛 robots working to fulfilling a task 𝜌 (𝜋1, . . . , 𝜋𝑛). To ensure the
task 𝜌 is carried out without collisions, regardless of the paths
𝜋 ′

1, . . . , 𝜋
′
𝑚 of the other𝑚 robots (which can be viewed as moving

obstacles), the control policy should satisfy the following HyperLTL
formula:

𝜑obs = ∀𝜋 ′
1 · · · ∀𝜋

′
𝑚 .∃𝜋1 · · · ∃𝜋𝑛 . 𝜓obs (7)

𝜓obs = 𝜌 (𝜋1, . . . , 𝜋𝑛) ∧
𝑛+𝑚∧
𝑖=1

𝑛+𝑚∧
𝑗=1,𝑖≠𝑗

∧
𝑝∈AP

¬(𝑝𝜋𝑖 ↔ 𝑝𝜏𝑖),

where the conjunct indicates the robots do not collide. When (7)
holds, the𝑚 robots can achieve the task 𝜌 without collisions.

4.2.2 Fairness. Consider several robots working in a shared space
(e.g., in a warehouse). Suppose B is a region with limited access that
requires no matter what path one robot chooses (the adversary 𝜋 ′),
another robot, whose path is 𝜋 can eventually follow the adversary
to access the shared area. This multi-robot planning problem can
be captured by the following formula in HyperLTL:

𝜑fair = ∀𝜋 ′.∃𝜋. 𝜓fair
𝜓fair =

(
B𝜋 ′ ∧ ¬B𝜋 ′ → (¬B𝜋 ′ U B𝜋)

) (8)

where the objective𝜓fair means that path 𝜋 ′ should not enter the
region twice before 𝜋 enters.

6

4.2.3 Pursuer-Evader Game [8]. Given a sensor network con-
sisting of several motes, where each mote is able to carry certain
information, such as clock time or if some agent is currently de-
tected on this mote. Also, each mote can interact with its neighbors,
which allows to build a parent-child relationship and form a track-
ing tree. Now, given two agents an evader and a pursuer, we assume
that the evader can move freely to escape from the pursuer with the
ability to get full knowledge of every mote on the entire sensor net-
work (e.g., the current location of the pursuer). On the other hand,
the pursuer is limited to only be able to obtain the information from
the mote that it currently resides on. Our goal is to synthesize (1)
a network design, such that each mote can detect the presence of
agents and transmitting certain information to its neighbors, and
(2) the behavior of the pursuer to eventually catch the evader. The
specification of the game in HyperLTL is as follows:

𝜑pe = ∀𝜋1 .∃𝜋2 .∃𝜋3 . (𝑝𝑜𝑠𝜋1 ↔ 𝑝𝑜𝑠_𝑒𝑣𝑎𝑑𝑒𝑟𝜋2) ∧ (9)
(mote_info𝜋2

↔ mote_info𝜋3
) ∧

(𝑝𝑜𝑠𝜋1 ↔ 𝑝𝑜𝑠𝜋3)

where 𝑝𝑜𝑠 is the position of the agent, 𝑝𝑜𝑠_𝑒𝑣𝑎𝑑𝑒𝑟 is the position of
the mote that detects the evader on the network,mote_info encodes
the information that each mote can contain/transmit, including
time stamp and parent information. We note that the universal
quantification on ∀𝜋1 allows the evader to choose any path, the
state evolution of the sensor network is identified by ∃𝜋2, and the
behavior of the is pursuer synthesized through ∃𝜋3.

5 EVALUATION
5.1 Experimental Settings
We have implemented the technique described in Section 3.2. In
this section, we describe this implementation and the empirical
evaluation of the case studies described in Section 4. Our implemen-
tation works as follows. Given a DTS, we automatically unfold it
up to a given time horizon ℎ ≥ 0 using a home-grown tool written
in Ocaml. The unfolded DTS is combined with the QBF encoding of
the input HyperLTL formula to form a complete QBF instance which
is then fed to the QBF solver Quabs [13]. All experiments in this
section are run on a MacBook Pro laptop with Intel i7 CPU @2.8
GHz and 16 GB of RAM.

We experiment with different path planning objectives, number
of agents, and size of DTS. In the following sections, we use colors
red for initial state(s), green for goal state(s), black for obstacles,
yellow for bridge area, also green for areas on two ends of the
bridge BL and BR .

5.2 Non-Adversarial Case Studies
Recall in the non-adversarial case, the HyperLTL formula starts with
a sequence of existential quantifiers. A satisfiability result from
the QBF solver implies successful synthesis, where the collection
of witness traces to the existential quantifiers form a valid global
control policy that satisfies the global control objective. The results
are summarized in Table 1. In a nutshell, in cases where the formula
involves only existential quantifiers, we observe a high degree of
scalability. However, for path robustness, since the formula involves
quantifier alternation, the synthesis time grows quickly.

5.2.1 Squad Shift Planning. Figure 3 shows the result of syn-
thesizing paths when the number of agents is two, i.e., 𝑁 = 𝑛 = 2
in formula (2), for a 10× 10 grid, where the critical region is labeled
by proposition crit in the purple cell. Witness paths for 𝜋1 and 𝜋2
are represented by blue and orange arrows, respectively. As can be
seen, each agent eventually reaches the critical section and 𝜋1 and
𝜋2 paths take turn to guard crit. The results for different sizes of
grids and agents are shown in Table 1. We note that for the case of
𝑁 = 𝑛 = 2, the squad shift objective can be written as [BL , 1]
in cLTL [25]. But generally when 𝑁 ≠ 𝑛, the planning objective (2)
cannot be expressed by cLTL, since they cannot distinguish the
identities of the agents guarding the area.

5.2.2 Priority Planning. Figure 4 shows the result of synthesiz-
ing paths when the number of agents in formula (3) is two for a
10× 10 grid. The synthesized paths 𝜋1 and 𝜋2 start at the initial red
cell and are shown in blue and orange arrows, respectively. Since
𝜋1 reaches BL before 𝜋2 , it is given the priority to pass the bridge
before 𝜋2 .

Next, in Fig 5, we demonstrate another scenario when 𝜋1 is
required to complete the emergency mission at the pink area before
passing the bridge. This is enforced in the HyperLTL formula. In this
case, because 𝜋1 still reached BL before 𝜋2 , we can observe that
𝜋2 moves around and waits on the left side of the bridge, and does
not passing bridge until 𝜋1 did, in order to preserve the priority
specification. The results for different sizes of grids and agents are
shown in Table 1.

crit

Figure 3: Paths
satisfying 𝜑sqs.

BL BR

B B B B

Figure 4: Agents
satisfying 𝜑pri.

BL BR

B B B B

Figure 5: Agents
satisfying 𝜑pri.

5.2.3 Opacity Planning. Here we investigate two different con-
cepts of opacity in robotic planning.

Initial-State opacity (ISO). Assume now we give agents the mis-
sion of reaching the goal states (colored in green) in Fig. 6. Recall
from formula (4) that the ISO property requires that each agent 𝜋𝑖
has another corresponding 𝜏𝑖 , such that starting from a different
initial state, both can reach the goal by following the same sequence
of actions. For two agents, we substitute 𝜌 by (goal𝜋1

∧ goal𝜋2
)

and (goal𝜏1
∧ goal𝜏2

) for 𝜋 and 𝜏 paths in formula (4). The syn-
thesis result is presented in Fig. 6 for two agents, where 𝜋1 and 𝜏1
paths red and pink, and 𝜋2 and 𝜏2 paths are blue and green. Clearly,
we cannot identify agents by observing their initial state behavior.

Path opacity (PO). Following the same mission setting in ISO
and replacement of 𝜌 in formula (5), now we consider having the
paths in the shaded area as sensitive information in Fig. 7. Thus,

7

the concrete formula for PO with two agents is the following:

𝜑po = ∃𝜋1 .∃𝜋2 .∃𝜏1 .∃𝜏2 .
(goal𝜋1

∧ goal𝜋2
) ∧ (goal𝜏1

∧ goal𝜏2
)∧

¬ (Act𝜋1 = Act𝜏1) ∧ ¬ (Act𝜋2 = Act𝜏2)∧
((shaded𝜋1 ∧ shaded𝜏1) → (Act𝜋1 = Act𝜏1))∧
((shaded𝜋2 ∧ shaded𝜏2) → (Act𝜋2 = Act𝜏2))

As shown in 7, 𝜋1 and 𝜏1 in red and pink are two different paths, but
their actions are the same throughout the shaded area. Similarity,
paths 𝜋2 and 𝜏2 satisfy this specification as well. The results for
different sizes of grids and agents are shown in Table 1.

Figure 6: 𝜑iso of
initial states for
multi-agent

Figure 7: 𝜑po of
path multi-agent

Figure 8: 𝜑rob for
multi-robots

5.2.4 Robustness Planning. Our goal is to synthesize two agents,
𝜋1 and 𝜋2, such that the actions for each agent, are robust in terms
of all other traces on the map. Similar to opacity, we replace 𝜌 in
formula (6) with (goal𝜋1

∧ goal𝜋2
) and (goal𝜏1

∧ goal𝜏2
)

for 𝜋 and 𝜏 paths. As shown in Figure 8, the paths synthesized
for the agents represent a valid robust strategy for all other paths
on the map. The results for different sizes of grids and agents are
shown in Table 1. As mentioned earlier, due to the nature of the
HyperLTL formula, the synthesis time grows significantly faster than
other path planning problems.

5.3 Adversarial Case Studies
Wenow focus on path planning problems involving adversaries. The
results are summarized in Table 2. Recall that HyperLTL formulas for
adversarial cases are alternating with a leading universal quantifier
(i.e., ∀+∃+). When our synthesis technique returns satisfiability, it
does not enumerate a witness to existential quantifiers that follow
universal quantifiers, due to a combinatorial explosion. However,
for sanity check, our tool can spit out a witness for a particular
instantiation of the universal quantifiers.

5.3.1 Moving Obstacles Planning. Given the grid shown is
Figs. 9 and 10, there are adversaries for which no successful control
policy exists (e.g., in black arrows in Fig. 10) and there are ones for
which there is a control policy (e.g., in black arrows in Fig. 9). This
means in general, for such a grid, the problem is not satisfiable for
all adversaries. However, the problem has a solution for the grid in
Fig. 11. Our technique can identify all such cases.

5.3.2 Fairness Planning. We experiment with the grid shown
in Fig. 12 with respect to formula (8) 𝜑obs. Our algorithm returns a
satisfiability result, meaning that for all adversarial paths 𝜋1, there
is another path 𝜋2 that satisfies the formula.

Prop # agents 𝑄𝑆 𝑠𝑖𝑧𝑒 ℎ Total[s]

𝜑sqs

2 ∃2
102 15 1.04
202 25 6.78
402 35 107.43

4 ∃4
102 20 4.85
202 30 30.49
402 45 170.52

8 ∃8
102 25 25.85
202 40 94.82
402 55 474.15

10 ∃10
102 30 39.01
202 50 175.93
402 65 864.46

𝜑pri

2 ∃2
102 20 2.74
202 40 22.11
402 70 178.10

4 ∃4
102 25 14.04
202 50 66.80
402 90 601.11

8 ∃8
102 35 63.29
202 60 220.67
402 110 1872.45

10 ∃10
102 45 97.30
202 75 450.00
402 140 4446.63

𝜑rob

1 ∃∀
102 17 0.46
202 38 28.23
402 80 1208.34

2 ∃2∀
102 18 0.89
202 38 33.07
402 80 1394.49

𝜑iso

1 ∃2
102 17 0.55
202 38 21.67
402 80 457.09

2 ∃4
102 18 1.30
202 38 39.57
402 80 917.24

4 ∃8

202 38
103.32

6 ∃12 165.31
10 ∃20 267.64

𝜑po

1 ∃2
102 13 0.31
202 38 24.13
402 40 470.36

2 ∃4
102 15 0.77
202 38 44.46
402 80 1028.55

4 ∃8

202 38
103.46

6 ∃12 158.77
10 ∃20 250.14

Table 1: Results for non-adversarial experiments.∃𝑘 denotes
𝑘 number of existential quantifiers in a row.

One particular example is shown in Fig. 12, where the blue ad-
versary passes the bridge the first time and when it attempts to

8

Figure 9: Agent
beats adversary

for 𝜑obs.

Figure 10: An
unbeatable

adversary for 𝜑obs.

Figure 11: Agent
beats adversary

for 𝜑obs.

B B B B

Figure 12: 𝜋1 passes the bridge twice with 𝜑fair preserved.

pass again, the orange controllable agent forces the adversary to
wait until it passes the bridge.

5.3.3 Pursuer-Evader Game. In our implementation, we use
three different DTSs to represent the behaviors of the evader, sensor
network, and pursuer. The pursuer-evader game is a perfect exam-
ple of the application of our multi-model framework introduced in
Section 2 for path planning.

As mentioned in Section 4.2, the evader is free to choose any
trajectory (i.e.,∀𝜋1 in formula (9)). One scenario that we synthesized
is the following. In Fig. 13, initially, the evader is in cell 1 and the
pursuer is in cell 9. Next, the evader moves to cells 4 and 5 (see
Fig. 14). This move will result in updating the network design to
form a tracking tree by using the timestamp of evader’s entrance
in these cells and assigning the parent-child relationship for ∃𝜋2 in
formula (9). That is, at ℎ = 2, we have parent (2) = 1, parent (1) =
parent (7) = 4, and parent (4) = 5 (the tracking tree is rooted at the
location of the evader). In Fig. 15 and 16, the evader moves to cells
2 and then 3. Since we assume that the pursuer moves faster than
the evader, the tracking tree in Fig. 16 leads the pursuer (i.e., by ∃𝜋3
in formula (9)) through cells 9, 8, 5, 2, and 3 to catch the evader.

Our synthesis technique returns a satisfiability result, meaning
that for all evader moves, we can compute a correct tracking tree
for the pursuer to catch the evader. Indeed, our algorithm generates
the same “evader centric” solution proposed in [8].

(𝐸0)

𝐸1

𝑃

1 2 3

4 5 6

7 8 9

Figure 13:
ℎ = 1

𝐸2

𝑃

1 2 3

4 5 6

7 8 9

Figure 14:
ℎ = 2

𝐸3

𝑃

1 2 3

4 5 6

7 8 9

Figure 15:
ℎ = 3

𝐸4

𝑃

1 2 3

4 5 6

7 8 9

Figure 16:
ℎ = 4

Prop 𝑄𝑆 𝑠𝑖𝑧𝑒 ℎ Total[s]

𝜑obs ∀∃
102 13 1.31
202 35 45.03
402 55 840.68

𝜑fair ∀∃
102 30 3.63
202 60 44.82
402 100 129.69

𝜑pegame ∀∃∃ 32 7 0.49

Table 2: Results for adversarial experiments.

5.4 Summary of Results
Tables 1 and 2 summarize our experimental results. Two important
observations from these tables are the following. First, although
the underlying PSPACE-complete problem of QBF-solving can be a
potential stumbling block, our experiments show the effectiveness
of our approach for moderate-sized models and number of agents.
Secondly, as expected, the path planning problem is generally more
difficult to solve for cases involving quantifier alternation. Even in
that case, we are not limited to small models.

We also note that we have replicated the majority of the exper-
iments in [25] using our approach. For reasons of space, we are
not able to present a detailed comparison and contrast. However,
it is noteworthy that as expected, the cLTL approach slightly out-
performs our algorithm, since HyperLTL is more expressive, making
our technique more general, but slightly slower.

6 RELATED WORK
Planning with non-hyper temporal logics. Most previous work on

formal methods for multi-agent cyber-physical or robotic systems
focuses on non-hyper temporal logics, such as LTL and STL [15, 17,
21]. However, due to the drawback that these logics can only express
tasks for a single execution of a single agent, these works depend
on explicitly decomposing the global task into several relatively
independent local tasks so that they can use LTL or STL to capture
each local task. To express non-decomposable global tasks, cLTL [16,
24, 25] extends LTL by adding quantification to specify the number
of states satisfying certain sub-formulas along paths. cLTL allows
simultaneous reasoning over executions from multiple agents and
can capture tasks such as “there are always at least two agents
in the same region”. For cLTL, effective synthesis algorithms can
be derived by SMT solving. TeamLTL [27] extends LTL by allowing
atomic propositions that describe the properties of several robots at
a time instance. This work is the extension of cLTL and TeamLTL to
allow explicit existential and universal quantifications over paths,
to handle tasks like “for any execution of agent 𝐴, there exists a
control policy for agent 𝐵 to fulfill a joint temporal logic task with
agent 𝐴”.

Path planning with hyper temporal logic. To allow explicit exis-
tential and universal quantifications over paths, one needs a hyper
temporal logic such as HyperLTL. In [28], HyperLTL is first applied
to the planning of a single robot for objectives that implicitly in-
volves multiple paths, such as opacity (to plan a path that yields
another obfuscating path) and robustness (to plan a path such that
is robust to perturbations). Different from [28], this paper applies

9

HyperLTL to multi-robot planning and studies richer classes of plan-
ning objectives, especially planning with adversaries (as discussed
in Section 4.2). To adapt to planning with finite time horizons, we
used a terminating semantics with an explicitly specified time hori-
zon for HyperLTL, as opposed to finite-trace semantics in [28?].
Furthermore, this work proposes a new QBF-based design method
for HyperLTL objectives, which is practically more efficient than the
SMT-based design methods proposed in [28].

7 CONCLUSION
In this paper, we proposed a novel technique for multi-agent path
planning for robotic applications by using hyperproperties ex-
pressed inHyperLTL. We showed thatHyperLTL can elegantly express
important path planning objectives in both adversarial and non-
adversarial settings. Our path planning algorithm is based on a
bounded model checking technique for HyperLTL proposed in [14].
Our algorithm reduces the path planning problem to the satisfia-
bility problem for quantified Boolean formulas. Through a set of
experiments, we showed (1) the diversity of path planning prob-
lems that our technique can handle, and (2) the effectiveness and
efficiency of approach in spite of its generality.

As for future work, there are several interesting open research
problems. Our current approach lacks finding cyclic paths. This
is mainly because enforcing a loop condition in bounded model
checking for hyperproperties is not trivial at all. Another important
problem is to generalize our hyperproperty-based technique to
enable path planning in continuous signal settings (e.g., by using
the temporal logic HyperSTL [20]).

REFERENCES
[1] E. Ábrahám, E. Bartocci, B. Bonakdarpour, and O. Dobe. 2020. Probabilistic

Hyperproperties with Nondeterminism. In Proceedings of the 18th Symposium on
Automated Technology for Verification and Analysis (ATVA). 518–534.

[2] E. Ábrahám and B. Bonakdarpour. 2018. HyperPCTL: A Temporal Logic for
Probabilistic Hyperproperties. In Proceedings of the 15th International Conference
on Quantitative Evaluation of Systems (QEST). 20–35.

[3] Rajeev Alur. 2015. Principles of Cyber-Physical Systems. TheMIT Press, Cambridge,
Massachusetts.

[4] B. Bonakdarpour, C. Sánchez, and G. Schneider. 2018. Monitoring Hyperproper-
ties by Combining Static Analysis and Runtime Verification. In Proceedings of the
8th Leveraging Applications of Formal Methods, Verification and Validation (ISoLA).
8–27.

[5] Alper Kamil Bozkurt, Yu Wang, Michael Zavlanos, and Miroslav Pajic. 2020.
Control Synthesis from Linear Temporal Logic Specifications Using Model-Free
Reinforcement Learning. In IEEE International Conference on Robotics and Au-
tomation (ICRA). Paris, France, 10349–10355.

[6] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe, and C.
Sánchez. 2014. Temporal Logics for Hyperproperties. In Proceedings of the 3rd
Conference on Principles of Security and Trust POST. 265–284.

[7] M. R. Clarkson and F. B. Schneider. 2010. Hyperproperties. Journal of Computer
Security 18, 6 (2010), 1157–1210.

[8] M. Demirbas, A. Arora, andM. G. Gouda. 2003. A Pursuer-Evader Game for Sensor
Networks. In Proceedings of the 6th International Symposium on Self-Stabilizing
Systems (SSS). 1–16.

[9] M.R. Garey and D.S. Johnson. 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York.

[10] Ritwika Ghosh, Joao P. Jansch-Porto, Chiao Hsieh, Amelia Gosse, Minghao Jiang,
Hebron Taylor, Peter Du, Sayan Mitra, and Geir Dullerud. 2020. CyPhyHouse:
A Programming, Simulation, and Deployment Toolchain for Heterogeneous
Distributed Coordination. In 2020 IEEE International Conference on Robotics and
Automation (ICRA). 6654–6660.

[11] Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi,
and Dominik Wojtczak. 2019. Omega-Regular Objectives in Model-Free Rein-
forcement Learning. In Tools and Algorithms for the Construction and Analysis of
Systems, Tomáš Vojnar and Lijun Zhang (Eds.). Vol. 11427. Springer International
Publishing, Cham, 395–412.

[12] Mohammadhosein Hasanbeig, Yiannis Kantaros, Alessandro Abate, Daniel Kroen-
ing, George J. Pappas, and Insup Lee. 2019. Reinforcement Learning for Temporal
Logic Control Synthesis with Probabilistic Satisfaction Guarantees. In IEEE 58th
Conference on Decision and Control (CDC). 5338–5343. arXiv:1909.05304

[13] J. Hecking-Harbusch and L. Tentrup. 2018. Solving QBF by Abstraction. In
Proceedings of the 9th International Symposium on Games, Automata, Logics, and
Formal Verification (GandALF) (EPTCS), Vol. 277. 88–102.

[14] Tzu-Han Hsu, César Sánchez, and Borzoo Bonakdarpour. 2020. Bounded Model
Checking for Hyperproperties. CoRR abs/2009.08907 (2020). arXiv:2009.08907
http://arxiv.org/abs/2009.08907

[15] Yiannis Kantaros, Meng Guo, and Michael M. Zavlanos. 2019. Temporal Logic
Task Planning and Intermittent Connectivity Control of Mobile Robot Networks.
IEEE Trans. Automat. Control 64, 10 (Oct. 2019), 4105–4120.

[16] Francois Laroussinie, Antoine Meyer, and Eudes Petonnet. 2010. Counting LTL.
In 2010 17th International Symposium on Temporal Representation and Reasoning.
51–58.

[17] Lars Lindemann, Jakub Nowak, Lukas Schönbächler, Meng Guo, Jana Tumova,
and Dimos V. Dimarogonas. 2019. Coupled Multi-Robot Systems Under Linear
Temporal Logic and Signal Temporal Logic Tasks. IEEE Transactions on Control
Systems Technology (2019), 1–8.

[18] Oded Maler and Dejan Nickovic. 2004. Monitoring Temporal Properties of
Continuous Signals. In FTRTFT. 152–166.

[19] Nathan Michael, Michael M. Zavlanos, Vijay Kumar, and George J. Pappas. 2008.
Distributed Multi-Robot Task Assignment and Formation Control. In 2008 IEEE
International Conference on Robotics and Automation. 128–133.

[20] L. V. Nguyen, J. Kapinski, X. Jin, J. V. Deshmukh, and T. T. Johnson. 2017. Hyper-
properties of real-valued signals. In Proceedings of the 15th ACM-IEEE Interna-
tional Conference on Formal Methods and Models for System Design (MEMOCODE).
104–113.

[21] Y. V. Pant, H. Abbas, R. A. Quaye, and R. Mangharam. 2018. Fly-by-Logic: Control
of Multi-Drone Fleets with Temporal Logic Objectives. In 2018 ACM/IEEE 9th
International Conference on Cyber-Physical Systems (ICCPS). 186–197.

[22] Amir Pnueli. 1977. The Temporal Logic of Programs. In 18th Annual Symposium
on Foundations of Computer Science (Sfcs 1977). 46–57.

[23] Wei Ren and R.W. Beard. 2005. Consensus Seeking in Multiagent Systems under
Dynamically Changing Interaction Topologies. IEEE Trans. Automat. Control 50,
5 (May 2005), 655–661.

[24] Yunus Emre Sahin, Petter Nilsson, and Necmiye Ozay. 2017. Synchronous and
Asynchronous Multi-Agent Coordination with cLTL+ Constraints. In 2017 IEEE
56th Annual Conference on Decision and Control (CDC). 335–342.

[25] Yunus Emre Sahin, Petter Nilsson, and Necmiye Ozay. 2020. Multirobot Coordi-
nation With Counting Temporal Logics. IEEE Transactions on Robotics 36, 4 (Aug.
2020), 1189–1206.

[26] Hussein Sibai, Navid Mokhlesi, Chuchu Fan, and Sayan Mitra. 2020. Multi-Agent
Safety Verification Using Symmetry Transformations. In Tools and Algorithms
for the Construction and Analysis of Systems (Lecture Notes in Computer Science),
Armin Biere and David Parker (Eds.). Springer International Publishing, Cham,
173–190.

[27] Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen, and Fan Yang.
2020. Linear-Time Temporal Logic with Team Semantics: Expressivity and Com-
plexity. arXiv:2010.03311 [cs] (Oct. 2020). arXiv:2010.03311 [cs]

[28] YuWang andMiroslav Pajic. 2020. Hyperproperties for Robotics:Motion Planning
via HyperLTL. In IEEE International Conference on Robotics and Automation (ICRA).
Paris, France, accepted.

[29] Y. Wang, M. Zarei, B. Bonakdarpour, and M. Pajic. 2019. Statistical Verification
of Hyperproperties for Cyber-Physical Systems. ACM Transactions on Embedded
Computing systems (TECS) 18, 5s (2019), 92:1–92:23.

[30] Quanyan Zhu, Linda Bushnell, and Tamer Başar. 2013. Resilient Distributed
Control of Multi-Agent Cyber-Physical Systems. In Control of Cyber-Physical
Systems: Workshop Held at Johns Hopkins University, March 2013, Danielle C.
Tarraf (Ed.). Springer International Publishing, Heidelberg, 301–316.

10

https://arxiv.org/abs/1909.05304
https://arxiv.org/abs/2009.08907
http://arxiv.org/abs/2009.08907
https://arxiv.org/abs/2010.03311

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Discrete Transition Systems
	2.2 The Temporal Logic HyperLTL

	3 Problem Statements and QBF-based Solution
	3.1 Formal Statement of the Problem
	3.2 Reduction to the QBF Satisfiability Problem
	3.3 Example

	4 Multi-Agent Path Planning Objectives in HyperLTL
	4.1 Non-Adversarial Planning
	4.2 Adversarial Path Planning

	5 Evaluation
	5.1 Experimental Settings
	5.2 Non-Adversarial Case Studies
	5.3 Adversarial Case Studies
	5.4 Summary of Results

	6 Related Work
	7 Conclusion
	References

